\begin{frame}
\frametitle{MT and $\neg\neg_i$ as ``derived rules''}
\begin{goal}{}
The Modus Tollens rule derives \;$\neg \alpha$\; from \;$\alpha \to \beta$ and $\neg \beta$.
\medskip\pause
We can derive it using other rules as follows:
\smallskip
\begin{tikzpicture}
\naturaldeduction{
\mpause[1]{
\proofstep{$\alpha \to \beta$}{premise};
}
\mpause{
\proofstep{$\neg \beta$}{premise};
}
\mpause{
\proofbox{
\mpause{
\proofstep{$\alpha$}{assumption};
}
\mpause{
\proofstep{$\beta$}{$\to_e$ 3,1};
}
\mpause{
\proofstep{$\bot$}{$\neg_e$ 2,4};
}
}
}
\mpause{
\proofstep{$\neg \alpha$}{$\neg_i$ 3--5};
}
}
\end{tikzpicture}
\pause\pause\pause\pause\pause\pause\pause\pause
\smallskip
Thus: $\alpha \to \beta,\;\neg\beta \;\vdash \neg\alpha$\;.
\end{goal}
\pause
\begin{block}{}
This shows that $\neg\neg_i$ and MT are \emph{not needed},
but sometimes help to make derivations easier or shorter.
\end{block}
\end{frame}