\begin{frame}
\frametitle{Rules for $\neg\neg$ and $\to$}
\begin{goal}{Rules for $\neg\neg$}
\vspace{-1ex}
\begin{align*}
\infer[\rulename{\neg\neg_e}]
{\alpha}
{\neg\neg\alpha}
&&
\infer[\rulename{\neg\neg_i}]
{\neg\neg\alpha}
{\alpha}
\end{align*}
\end{goal}
\pause\medskip
\begin{goal}{Elimination rules for $\to$}
This rule is called ``Modus Ponens'' (MP):
\begin{align*}
\infer[\rulename{\to_e} \;\; (or \rulename{MP})]
{\beta}
{\alpha && \alpha \to \beta}
\end{align*}
\pause
This rule is called ``Modus Tollens'' (MT):
\begin{align*}
\infer[\rulename{MT}]
{\neg\alpha}
{\alpha \to \beta && \neg\beta}
\end{align*}
\end{goal}
\end{frame}