Logic and Modelling

- Propositional Logic -

Jörg Endrullis

VU University Amsterdam

Propositions are "declarative sentences".

Propositional Logic: Introduction

- If it rains and Janneke does not have her umbrella, then she is wet.
- Janneke is not wet.
- It rains.

Thus, Janneke has her umbrella.

We can translate this to propositional logic as follows:

- r: It rains.
- *u* : Janneke has her umbrella.
- w: Janneke is wet.

Then the sentences above becomes:

$$(r \land \neg u) \to w, \ \neg w, \ r \models u$$

Propositional Logic: Syntax

Syntax of Propositional Logic

propositional variables

$$p, q, r, \ldots, p_0, p_1, \ldots$$

propositional connectives

$$\neg$$
, \land , \lor , \rightarrow

propositional formulas

$$egin{array}{cc} p & & p \wedge q \ \neg p & & p \wedge q \ (\neg p \wedge q)
ightarrow r & & p \vee \neg q \end{array}$$

We use Greek letters for formulas:

φ	phi	ψ	psi	ξ,	xi
α	alpha	β	beta		••

Bracket Convention

Priority Rules

- binds the strongest
- \land,\lor binding-strength is in-between
 - \rightarrow binds the weakest

How do we read the following?

 $\boldsymbol{\rho} \wedge \boldsymbol{q} \rightarrow \boldsymbol{r} = (\boldsymbol{\rho} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{r}$

$$\neg p \wedge r = (\neg p) \wedge r$$

- $p \land q \lor r$ = unclear! needs brackets!
- $p \wedge q \wedge r = (p \wedge q) \wedge r = p \wedge (q \wedge r)$ (associativity)

 $p \rightarrow q \rightarrow r$ = unclear! needs brackets! (not associative)

Parse Trees

What is the formula corresponding to the following parse tree?

Properties of Formulas

Contingency = sometimes true and sometimes false

 $p \wedge q \wedge \neg r$

Tautology = always true

 $p \lor \neg p$ p
ightarrow p((p
ightarrow q)
ightarrow p)
ightarrow p

Contradiction = always false

$$((p
ightarrow q)
ightarrow p) \land \neg p$$

Equivalent formulas = true at the same time

$$\neg p \lor q \equiv p \rightarrow q$$

φ	ψ	$\varphi \to \psi$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

Parse Trees

Bottom-up evaluation of truth values in a parse tree:

Truth Tables and Properties of Formulas

contingency: sometimes F, sometimes T

tautology: always T

р	q	$\neg p$	$oldsymbol{p} ightarrow oldsymbol{q}$	$\neg(p \rightarrow q)$	$\neg p \land \neg (p \rightarrow q)$
F	F	Т	Т	F	F
F	Т	Т	Т	F	F
Т	F	F	F	Т	F
Т	Т	F	Т	F	F

contradiction: always F

Logic Equivalence

Formulas ϕ and ψ are **logically equivalent**, denoted

 $\varphi \ \equiv \ \psi \ ,$

if φ and ψ have the same truth table.

р	q	$\neg p$	$\neg p \lor q$	$oldsymbol{p} ightarrow oldsymbol{q}$
F	F	Т	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	F
Т	Т	F	Т	Т

 $\neg p \lor q \equiv p \rightarrow q$

More examples

 $p \land q \equiv \neg(\neg p \lor \neg q)$ $p \lor q \equiv q \lor p$ $p \rightarrow \neg q \equiv q \rightarrow \neg p$

Important Equivalences

$$\alpha \land \alpha \equiv \alpha$$
$$\alpha \land \alpha \equiv \alpha$$
$$\alpha \lor \alpha \equiv \alpha$$
$$\alpha \land \beta \equiv \beta \land \alpha$$
$$\alpha \lor \beta \equiv \beta \lor \alpha$$
$$\alpha \rightarrow \beta \equiv \neg \alpha \lor \beta$$
$$\alpha \rightarrow \beta \equiv \neg \beta \rightarrow \neg \alpha$$

 $\neg \neg \alpha = \alpha$

De Morgan laws

$$\neg(\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$$

$$\neg(\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$$

Logical Reasoning

From $\alpha_1, \ldots, \alpha_n$ follows β .

This is denoted as:

 $\alpha_1, \ldots, \alpha_n \therefore \beta$

$$p \land \neg q \therefore \neg q$$

 $p \to (q \to r), p, \neg r \therefore \neg q$

Two Important Var	iants	
ser syr	nantic α_1, \ldots ntactic α_1, \ldots	$, \alpha_n \models \beta$ $, \alpha_n \vdash \beta$

Semantic Entailment

Semantic Entailment / Consequence

$$\alpha_1,\ldots,\alpha_n \models \beta$$

means

Whenever $\alpha_1, \ldots, \alpha_n$ are all true, β is also true.

Do we have
$$q \models p \rightarrow q$$
 ?

$$\begin{array}{c|c} p & q & p \rightarrow q \\ \hline F & F & T \\ \hline F & T & T \\ \hline T & F & F \\ \hline T & T & T \end{array}$$

Whenever q is T also $p \rightarrow q$ is T. Hence: $q \models p \rightarrow q$.

Examples Semantic Entailment

Do we have
$$p \rightarrow q, \neg q \models \neg p$$
 ?

At which line(s) do we need to look?

• where both p
ightarrow q and $\neg q$ are T

In this line(s) $\neg p$ is true.

Hence $p \rightarrow q$, $\neg q \models \neg p$ holds.

Examples Semantic Entailment

To show that $\alpha_1, \ldots, \alpha_n \models \beta$ we need to show

β is true whenever α₁,..., α_n are true.
 This can also be achieved by logical reasoning:

- assume that $\alpha_1, \ldots, \alpha_n$ are true, and
- show that β must be true as well.

```
Do we have p \rightarrow q, \neg q \models \neg p ?
```

```
Assume that p \rightarrow q and \neg q are T.
```

Then q is F.

Then *p* must be F since otherwise $p \rightarrow q$ was F.

Thus $\neg p$ is T.

Hence $p \rightarrow q$, $\neg q \models \neg p$ holds.

Disproving Semantic Entailment

How to disprove $\alpha_1, \ldots, \alpha_n \models \beta$? That is, $\alpha_1, \ldots, \alpha_n \not\models \beta$?

Find a valuation (assignment of truth values to variables) that

- makes $\alpha_1, \ldots, \alpha_n$ true, and
- β false.

Do we have $p \lor q \models p \rightarrow q$?

р	q	$p \lor q$	$oldsymbol{p} ightarrow oldsymbol{q}$
F	F	F	Т
F	Т	Т	Т
Т	F	Т	F
Т	Т	Т	Т

When p is T and q is F, then $p \lor q$ is T and $p \to q$ is F. Conclusion: $p \lor q \not\models p \to q$.

Examples Semantic Entailment

Which of the following semantic entailments hold?

$$\blacktriangleright p \lor q, q \models p
ightarrow q$$

$$\blacktriangleright q \models p
ightarrow q$$
 ?

- ▶ $p \models p \rightarrow q$?
- $\blacktriangleright p
 ightarrow q \models p$?
- ▶ $p \rightarrow q \models q$?
- $\blacktriangleright p \lor q \models q \lor p ?$
- ▶ $p \lor q \models p$?
- $\blacktriangleright p \land q \models p \rightarrow q \quad ?$
- $\blacktriangleright p \to (q \to r) \models q \to (p \to r) ?$
- $\blacktriangleright p \to (q \to r) \models (p \to q) \to r \quad ?$
- $\blacktriangleright (p \to q) \to r \models p \to (q \to r) ?$

Tautologies and Semantic Equivalence

Tautology

A formula φ is a tautology if it holds without premises:

 $\models \varphi \quad \Longleftrightarrow \quad \varphi \text{ is a tautology}$

 $\models p \lor \neg p$

Semantic Equivalence

$$\alpha \equiv \beta \quad \Longleftrightarrow \quad \alpha \models \beta \text{ and } \beta \models \alpha$$

(In other words: α and β have the same truth table.)

Note that \equiv is an equivalence relation:

- reflexive,
- symmetric,
- transitive.

Other Important Facts

$$\alpha \models \beta \iff \models \alpha \to \beta$$
$$\alpha_1, \dots, \alpha_n \models \beta \iff \alpha_1, \dots, \alpha_{n-1} \models \alpha_n \to \beta$$
$$\alpha_1, \dots, \alpha_n \models \beta \iff \models \alpha_1 \to (\alpha_2 \to (\dots (\alpha_n \to \beta) \dots))$$
$$\models \alpha \land \beta \iff \models \alpha \text{ and } \models \beta$$
$$\models \alpha \text{ or } \models \beta \implies \models \alpha \lor \beta$$
$$\models \alpha \text{ or } \models \beta \implies \models \alpha \lor \beta$$

For example: $\models p \lor \neg p$, but not $\models p$ and not $\models \neg p$.

 $\neq \Rightarrow$

 $\models \alpha$ υı