\begin{frame}
\frametitle{Examples Semantic Entailment}
\begin{goal}{}
To show that $\alpha_1,\ldots,\alpha_n \;\models \; \beta$ we need to show
\begin{itemize}
\item $\beta$ is true whenever $\alpha_1,\ldots,\alpha_n$ are true.
\end{itemize}
\pause
This can also be achieved by logical reasoning:
\begin{itemize}
\item assume that $\alpha_1,\ldots,\alpha_n$ are true, and
\item show that $\beta$ must be true as well.
\end{itemize}
\end{goal}
\pause
\begin{exampleblock}{}
Do we have \quad $p \to q, \; \neg q \;\models\; \neg p$ \quad ?
\pause
\bigskip
Assume that $p \to q$ and $\neg q$ are $\T$.
\medskip\pause
Then $q$ is $\F$.
\medskip\pause
Then $p$ must be $\F$ since otherwise $p \to q$ was $\F$.
\medskip\pause
Thus $\neg p$ is $\T$.
\bigskip\pause
Hence $p \to q, \; \neg q \;\models\; \neg p$ holds.
\end{exampleblock}
\end{frame}