
Databases – Application Programming

Jörg Endrullis

VU University Amsterdam

Application Architectures

Various ways of using database technology

database system

application server

application client

user

network

thin-client
architecture

database system

application

user

network

client-server
architecture

database system

application

user

embedded
database

database
system

user

console
access

How do these applications talk to the database?

How to Talk to a Database?

Database application programming:
how to access a database from an application?

Static embedded queries
static SQL (preprocessor-based language extension)
inflexible, but syntax checked at compile time
e.g. SQLJ, Embedded SQL (C/C++)

Dynamic
dynamic SQL (queries constructed at runtime)
application programming interface (API)
powerful, but error-prone
e.g. JDBC, Python DB-API, ODBC, OLE-DB,. . .

Object Relational Mappings (ORM), and beyond
hide navigational access behind objects
e.g. JPA/Hibernate, RubyOnRails, ADO.NET/LinQ

Application Programming :: Dynamic SQL

Dynamic SQL: JDBC

A Java Database Connectivity (JDBC) example:

Connection conn = DriverManager.getConnection(url);

Statement stat = conn.createStatement () ;
ResultSet rs = stat.executeQuery(

"select sid , name from students"
);

while (rs.next()) {
int sid = rs.getInt("sid");
String name = rs.getString("name");
System.out.println(sid + ": " + name);

}
conn.close ();

getInt(...), getString(...)
fetch column values by name

fetch results
row by row

Use rs.wasNull(attribute) to check if attribute is null.

The Impedance Mismatch: database query language does
not match the application programming language.

(Different data models and data types.)

Type (mis)Match

Mapping SQL types to Java Types

SQL type Java Type
char, varchar String
numerical, decimal java.math.BigDecimal
bit boolean
tinyint byte
smallint short
integer int
bigint long
real float
float, double double
binary, varbinary byte[]
date java.sql.Date
time java.sql.Time
timestamp java.sql.Timestamp

The match is not precise! E.g. varchar(20) versus String.

Dynamic APIs: Advantages and Disadvantages

Advantages and Disadvantages of Dynamic APIs

powerful, flexible, but error-prone

SQL query given as strings may be incorrect
no error checking at development time
column names and types unknown at compile time

risk of SQL injection

mismatch between SQL and Java types (isNull)

Dynamic SQL: Optimising Applications

Improving Performance of Applications

Connection pooling:
keep DB connection open, reduces latency

Prepared statements:
SQL calls that are repeated often
allows driver to optimise queries (precompiled by DBMS)
in JDBC created with Connection.prepareStatement()
allows parameters: select * from products where id = ?

Stored procedures to reduce #query roundtrips
written in DB-specific language, not portable
in JDBC accessed with Connection.prepareCall()

Use a driver that is bulk-transfer optimised
when retrieving large result sets
driver can send several tuples in a single network packet

Application Programming :: SQL Injection

SQL Injection
Website with Login Screen

Name: Maria

Password: 12345

Server Side SQL

String userName = // name that the user has entered
String userPassword = // password that the user has entered

ResultSet rs = stat.executeQuery(
"select balance from accounts " +
"where name = '" + userName + "'" +
" and password = '" + userPassword + "'"

);

The Resulting SQL Query
select balance from accounts
where name = 'Maria' and password = '12345'

SQL injection is a very common mistake! Very dangerous!

SQL Injection
Website with Login Screen

Name: Joe’ - -

Password: who cares

Server Side SQL

String userName = // name that the user has entered
String userPassword = // password that the user has entered

ResultSet rs = stat.executeQuery(
"select balance from accounts " +
"where name = '" + userName + "'" +
" and password = '" + userPassword + "'"

);

The Resulting SQL Query
select balance from accounts
where name = 'Maria' and password = '12345'

SQL injection is a very common mistake! Very dangerous!

SQL Injection
Website with Login Screen

Name: Joe’ - -

Password: who cares

Server Side SQL

String userName = // name that the user has entered
String userPassword = // password that the user has entered

ResultSet rs = stat.executeQuery(
"select balance from accounts " +
"where name = '" + userName + "'" +
" and password = '" + userPassword + "'"

);

The Resulting SQL Query
select balance from accounts
where name = 'Joe' - - ' and password = 'who cares'

SQL injection is a very common mistake! Very dangerous!

SQL Injection: How to Prevent It?

To Prevent SQL Injection
Never build SQL queries with user input using string
concatenation!
Use the API to fill in the query parameters.

Preventing SQL Injection

String userName = // name that the user has entered
String userPassword = // password that the user has entered

PreparedStatement stat = conn.prepareStatement(
"select balance from accounts " +
"where name = ? " +
" and password = ? ");

// use the API to fill the name and password
stat.setString (1, userName);
stat.setString (2, userPassword);

ResultSet rs = stat.executeQuery ();

Application Programming :: Object Relational Mapping

Object Relational Mapping

Database schemas (tables) are not always ideal
not the same set of constructs and abstractions
in programming languages: objects, relations, inheritance

In applications we would like to work with
objects / entities
inheritance
relations

Object Relational Mapping

Object Relational Mapping
Maps rows in tables to objects:

table ≈ class
row ≈ object
foreign key navigation ≈ pointers / references

0..* 1
Event

+name
+date

Venue

+name

public class Event {

String getName();

String getDate();

Venue getVenue();

}

mapping

Ingredients
mapping from objects to database (automatic or designed)
run-time library handles interaction with the database

Many ORM toolkits: Hybernate, RubyOnRails, ADO.NET,. . .

Object Relational Mapping: JPA/Hibernate

0..* 1 0..* 1
Event

+name
+date

Venue

+name

Address

+street
+city

public class Event {

String getName();

String getDate();

Venue getVenue();

}

mapping

Example:
event.getVenue().getAddress().getStreet();

Under the hood:
venue = SELECT * FROM Venues WHERE VenueId = event.venueID

addr = SELECT * FROM Addresses WHERE AddressId = venue.addressID

return addr.getStreet()

Object Relational Mapping: Dangers

0..* 1 0..* 1
Event

+name
+date

Venue

+name

Address

+street
+city

We want all events in Amsterdam:

List <Event > eventList = // get all events
for (Event event : eventList) {

Address address = event.getVenue ().getAddress ();
if ("Amsterdam".equals(address.getCity ())) {

System.out.println(event.getName ());
}

}

Inefficient!
Instead of loading just the events with city "Amsterdam":

loads all events, and then iterates through all of them
also each call to getVenue() will result in an SQL query

JPA/Hibernate: HQL Queries

HQL queries query the object-representation of data:
Allows member access, e.g. employee.department.name.
This is not calling methods on the objects!
Query may return objects (if you are careful).

HQL Query: all events in Amsterdam

Query query = em.createQuery("from Events as event
where event.venue.address.city = 'Amsterdam '");

List <Event > eventsInAmsterdam = (List <Event >) query.list();
for(Event event : eventsInAmsterdam) {

... something ...
}

This is a more efficient way to get the events in Amsterdam.
Under the hood translated to SQL with two joins (3 tables).

Many queries do not return a full object!
E.g. what is the type of "select name,date from Events"?

Important Aspects of ORM Toolkits

Mapping specification:
map relational data onto objects
can largely be derived automatically

Query language (e.g. HQL):
adds object-oriented features to SQL
typically queries as strings (second class citizen)

Persistence:
transaction semantics
languages offer start of transactions, commit, abort

Fetch strategies
danger of implementing queries in Java
object caching

Challenges of ORMs

ORMs introduce an additional level of complexity
can be difficult to debug

Performance analysis is problematic because:
database queries are under the hood
sometimes very complex SQL queries are generated
difficult to understand what caused the complex queries

ADO.NET Entity Framework

ADO.NET Entity Framework
Different applications can have different views on the data.

Views entirely implemented on the client side.
Avoid polluting DB schema with per-application views.
No added maintenance on the database side.

(ANSI-SPARC model has views on server side)

Powerfull
Broad set of views that are updatable.
Updatability can be statically verified.

ADO.NET Entity Framework

Entity Data Model (EDM)
Data representation on client side: Entity Data Model.

Entity type = structured record with a key
Entity = instance of an Entity Type
Entity types can inherit from other entity types

Object-relational mapping
The EDM is then mapped to the logical database schema.

can be queried similar to HQL
can be queried similar to JDBC

Can we do better?

LinQ

LinQ
LinQ stands for Language INtegrated Query. Allows developers
to query data structures using an SQL-like syntax.

Advantages of LinQ
Queries are first-class citizens (not strings).
Full type-checking and error checking for queries.
Allows to query all collection structures.
(lists, sets, . . . ; not restricted to databases)

Problem
LinQ is not portable! Only available for C# and Visual Basic.

Luckily. . . similar frameworks in other programming languages.

LinQ

LinQ: Querying an array

// Create an array of integers
int[] myarray = new int[] { 49, 28, 20, 15, 25, 23, 24, 10, 7 };

// Create a a query for odd numbers ,
var oddNumbers = from i in myarray where i \% 2 == 1 select i;

//Odd numbers in descending order
var sorted = from i in oddNumbers orderby i descending select i;

// Display the results of the query
foreach (int i in oddNumbers)

Console.WriteLine(i);

LinQ allows query various kinds of data sources:
LinQ to DataSet (querying data sets like lists)
LinQ to XML
LinQ to SQL (interact with logical database model)
LinQ to Entities (interact with conceptual/object model)

LinQ: What the Runtime Module Does

Application

LinQ Runtime

SQL Server

LinQ query Objects
submit
changes

SQL query Rows
SQL or
stored
procedure

from c in db.Customers
where c.City == "London"
select
new { c.Name , c.Phone }

select Name , Phone
from customers
where city = 'London '

Services:

Change tracking
Concurrency control
Object identity

LinQ: Under the Hood

Syntactic sugar...

var contacts =
from c in customers
where c.State == "WA"
select new { c.Name , c.Phone };

Syntactic sugar for an expression with lambda expressions:

Query operations with lambda expressions

var contacts =
customers
.Where(c => c.State == "WA")
.Select(c => new{c.Name , c.Phone});

LinQ: Under the Hood

var contacts =
customers
.Where(c => c.State == "WA")
.Select(c => new{c.Name , c.Phone});

Here customers is of type IEnumerable<Customer>.

IEnumerable<...> provides methods for querying:

public static IEnumerable <T>
Where <T>(this IEnumerable <T> src ,

Func <T, bool >> p);

Func<T, bool>> p converted on-the-fly in an expression tree
(a delegate). This is then translated into an SQL expression...

Database APIs

After this lecture, you should be able to:
Explain the problem of impedance mismatch.

Be able to classify DB application interfaces:
static, dynamic, object-relational mapping

Discuss advantages and disadvantages of an API in terms
of object navigation and complex query execution.

Understand object-relational mappings:
Hibernate for Java
Entity Framework for .NET

Relate these to the ANSI SPARC 3-layer model and the
concepts of logical and physical data independence

Explain advantages of LinQ and how it relates to
impedance mismatch.

