\begin{frame}
\frametitle{Checking Conflict-Serializability}
\begin{block}{}
If the precedence graph has no cycles,
then an equivalent serial schedule is obtained by a \emph{topological sort} of the precedence graph.
\end{block}
\pause
\begin{exampleblock}{}
{\def\scheduleWidth{1cm}
\begin{tcenter}
\begin{tikzpicture}[node distance=15mm]
\schedule{}{3}{2rV|1wY|3wV|2rY|2wZ}
\node (t1) at (6.5cm,-\scheduleHeight) {$T_1$};
\node (t3) [below right of=t1] {$T_3$};
\node (t2) [above right of=t3] {$T_2$};
\draw [very thick,->] (t1) -- (t2);
\draw [very thick,->] (t2) -- (t3);
\end{tikzpicture}
\end{tcenter}
}\vspace{-2ex}
\begin{itemize}
\pause
\item There is an edge from $T_1$ to $T_2$ thus $T_1$ must be before $T_2$.
\pause
\item There is an edge from $T_2$ to $T_3$ thus $T_2$ must be before $T_3$.
\end{itemize}
\pause
The sorting which fulfils these criteria is: $T_1,T_2,T_3$.
\pause\smallskip
This yields the equivalent serial schedule:
{\def\scheduleWidth{1cm}
\begin{tcenter}
\begin{tikzpicture}
\schedule{}{3}{1wY|2rV|2rY|2wZ|3wV}
\end{tikzpicture}
\end{tcenter}
}
\end{exampleblock}
\end{frame}