
Databases

Jörg Endrullis

VU University Amsterdam

2015



Relational Normal Forms

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-based Normal Forms

3. Multivalued Dependencies (MVDs) and 4NF

4. Normal Forms and ER Design

5. Denormalization



Introduction

Functional Dependencies (FDs)
are a generalization of keys
central part of relational database design theory

This theory defines when a relation is in normal form.
(with respect to a given set of functional dependencies)

It is usually a sign of bad database design if a schema
contains relations that violate the normal form.
If a normal form is violated

data is stored redundantly and
information about different concepts is intermixed

COURSES

CRN TITLE INAME PHONE
22268 Databases I Grust 7111
42232 Functional Programming Grust 7111
31822 Graph Theory Klotz 2418

The phone number for each instructor is stored multiple times!



Introduction

There are different normal forms. The main ones are:

Third Normal Form (3NF): the standard relational normal
form used in practice (and education).

Boyce-Codd Normal Form (BCNF):
a bit more restrictive
easier to define
better for our intuition of good database design

Roughly speaking, BNCF requires that all FDs are keys.

In rare circumstances, a relation might not have an
equivalent BCNF form while preserving all its FDs.
The 3NF normal form always exists (and preserves the FDs).



Introduction

Normalization algorithms can construct good relation
schemas from a set of attributes and a set of functional
dependencies.

In practice:
relations are derived from ER models
normalization is used as an additional check only

When an ER model is well designed, the resulting derived
relational tables will automatically be in BCNF.

Awareness of normal forms can help to detect design
errors already in the conceptual design phase.



First Normal Form

The First Normal Form (1NF) requires that all table entries
are atomic (not lists, sets, records, relations).

The relational model all table entries are already atomic.
All further normal forms assume that tables are in 1NF.

The following are not violations of 1NF:
A table entry contains values with internal structure.

e.g. a CHAR(100) containing a comma separated list
List represented by several columns.

e.g. columns value1, value2, value3

Nevertheless, these are bad design.



Functional Dependencies

COURSES

CRN TITLE INAME PHONE
22268 Databases I Grust 7111
42232 Functional Programming Grust 7111
31822 Graph Theory Klotz 2418

A functional dependency (FD) in this table is

INAME→ PHONE

Whenever two rows of a relation agree in the instructor name
INAME, they must also agree in the PHONE column values!



Functional Dependencies

Intuitively, there is a functional dependency
INAME→ PHONE

since the phone number only depends on the instructor, not
on other course data.

This functional dependency read as
INAME {functionally, uniquely} determines PHONE

Also INAME is a determinant for PHONE .

A determinant is a ‘minimal’ functional dependency.

A determinant is like a partial key:
uniquely determines some attributes, but not all in general

E.g. INAME→ TITLE is not satisfied.



Functional Dependencies

In general, an functional dependencies take the form

A1, . . . ,An → B1, . . . ,Bm

sequence of attributes is unimportant
both sides formally are sets of attributes

{A1, . . . ,An}→ {B1, . . . ,Bm}

The functional dependency (FD)

A1, . . .An → B1, . . .Bm

holds for a relation R in a database state I if and only if for all
tuples t ,u ∈ I(R):

t .A1 = u.A1 ∧ · · ·∧ t .An = u.An⇒ t .B1 = u.B1 ∧ · · ·∧ t .Bm = u.Bm



Functional Dependencies

A key uniquely determines all attributes of its relation.
There are never two distinct rows with the same key, so the
functional dependency condition is trivially satisfied.

COURSES

CRN TITLE INAME PHONE
22268 Databases I Grust 7111
42232 Functional Programming Grust 7111
31822 Graph Theory Klotz 2418

We have the following functional dependencies:
CRN→ TITLE, INAME, PHONE

or equivalently:
CRN→ TITLE

CRN→ INAME

CRN→ PHONE



Functional Dependencies

An functional dependency with m attributes on the right

A1, . . .An → B1, . . .Bm

is equivalent to the m FDs:

A1, . . . ,An → B1
...

...
A1, . . . ,An → Bm

Thus, in the following it suffices to consider FDs with a single
column name on the right-hand side.



Functional Dependencies are Keys

Functional dependencies are constraints (like keys).

COURSES

CRN TITLE INAME PHONE
22268 Databases I Grust 7111
42232 Functional Programming Grust 7111
31822 Graph Theory Klotz 2418

In this example state, the functional dependency
TITLE→ CRN

holds. But this is probably not true in general!
It is a task of DB design to verify if this is mere coincidence.

For the database design process, the only interesting functional
dependencies are those that hold for all possible states.



Functional Dependencies are Keys

Functional dependencies are a generalisation of keys.

A1, . . . ,An is a key of relation R(A1, . . . ,An,B1, . . . ,Bm)⇐⇒
the functional dependency A1, . . . ,An → B1, . . .Bm holds.

COURSES

CRN TITLE INAME PHONE
22268 Databases I Grust 7111
42232 Functional Programming Grust 7111
31822 Graph Theory Klotz 2418

Here CRN→ TITLE, INAME, PHONE.



Functional Dependencies are Keys

Functional dependencies are partial keys.

The functional dependency

A1, . . .An → B1, . . .Bm

holds for a relation R if { A1, . . .An } is a key for the relation
obtained by restricting R to the columns {A1, . . .An,B1, . . .Bm}.

The restriction of the table COURSES to { INAME, PHONE } is:

COURSES

INAME PHONE
Grust 7111
Klotz 2418

The attribute INAME is a key of this table.

The goal of database normalization is to turn FDs into keys.
The DBMS is then able to enforce the FDs for the user.



Example

The following tables contains books and their authors:
BOOKS

AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084
Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

a book may have multiple authors, one author per row
attribute NO is used to indicate the order of the authors

The ISBN uniquely identifies a book. Thus

ISBN→ TITLE, PUBLISHER

Equivalently
ISBN→ TITLE, and
ISBN→ PUBLISHER



Example

The following tables contains books and their authors:
BOOKS

AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084
Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

a book may have multiple authors, one author per row
attribute NO is used to indicate the order of the authors

A book may have many authors. Thus

ISBN→ AUTHOR

does not hold!



Example

The following tables contains books and their authors:
BOOKS

AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084
Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

a book may have multiple authors, one author per row
attribute NO is used to indicate the order of the authors

One author can write many books, thus

AUTHOR→ TITLE

does not hold in general.

Although it happens to hold in the above database state.



Example

The following tables contains books and their authors:
BOOKS

AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084
Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

a book may have multiple authors, one author per row
attribute NO is used to indicate the order of the authors

There may be books with the same title but different
authors and different publishers. So

TITLE

determines no other attributes.



Example

The following tables contains books and their authors:
BOOKS

AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084
Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

a book may have multiple authors, one author per row
attribute NO is used to indicate the order of the authors

Every book has only one first (second, third, . . . ) author.
Thus

ISBN, NO→ AUTHOR



Example

The following tables contains books and their authors:
BOOKS

AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084
Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

a book may have multiple authors, one author per row
attribute NO is used to indicate the order of the authors

At first glance, the author of any given book is also
uniquely assigned a position in the authorship sequence.

ISBN, AUTHOR→ NO ? questionable

However, violated by an author list like Smith & Smith.



Example

The following tables contains books and their authors:
BOOKS

AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084
Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

a book may have multiple authors, one author per row
attribute NO is used to indicate the order of the authors

What about the functional dependency

PUBLISHER, TITLE, NO→ AUTHOR ? questionable

Authorship sequence might change in a new edition of a
book!



Example

The following tables contains books and their authors:
BOOKS

AUTHOR NO TITLE PUBLISHER ISBN
Elmasri 1 Fund. of DBS Addison-W. 0805317554
Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084
Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

a book may have multiple authors, one author per row
attribute NO is used to indicate the order of the authors

During database design, only unquestionable conditions
should be used as functional dependencies.

Database normalization alters the table structure
depending on the specified functional dependencies.
Later hard to change: needs creation/deletion of tables!



Quiz

A table with homework grades:

HOMEWORK_RESULTS

STUD_ID FIRST LAST EX_NO POINTS MAX_POINTS
100 Andrew Smith 1 9 10
101 Dave Jones 1 8 10
102 Maria Brown 1 10 10
101 Dave Jones 2 11 12
102 Maria Brown 2 10 12

Which FDs should hold for this table in general?
Identify FDs that hold in this table but not in general.



Implication of Functional Dependencies

Whenever A→ B and B → C hold, then A→ C is automatically
satisfied.

Note that CRN→ PHONE is a consequence of

CRN→ INAME and INAME→ PHONE

FDs of the form A→ A always hold.

PHONE→ PHONE holds, but is not interesting

Implication of Functional Dependencies
A set of FDs {α1 → β1, . . . , αn → βn} implies an FD α→ β if
and only if every DB state which satisfies all αi → βi ,1 6 i 6 n,
also satisfies α→ β.



Implication of Functional Dependencies

The DB designer is normally not interested in all FDs, but only
in a representative FD set that implies all other FDs.

Armstrong Axioms
Reflexivity:
If β ⊆ α, then α→ β.
Augmentation:
If α→ β, then α ∪ γ→ β ∪ γ.
Transitivity:
If α→ β and β→ γ, then α→ γ.

Use the Amstrong axioms to show that

ISBN→ TITLE, PUBLISHER

ISBN, NO→ AUTHOR

PUBLISHER→ PUB_URL

implies ISBN→ PUB_URL.



Implication of Functional Dependencies

Simpler way to check whether a→ β is implied by an FD set:
compute the cover α+ of α, and
then check if β ⊆ α+.

Cover
The cover α+

F of
a set of attributes α
with respect to an FD set F

is the set of all attributes B that are uniquely determined by α:

α+
F := { B | F implies α→ B }

Implication Check
A set of FDs F implies an FD α→ β if and only if β ⊆ α+

F .



Implication of Functional Dependencies

Cover computation
Input: α (set of attributes)

α1 → β1, . . . , αn → βn (set of FDs F)
Output: α+ (the cover of α)

x = α;
while x did change do

for all given FD αi → βi do
if αi ⊆ x then

x = x ∪ βi ; (add attributes in βi to x)
end if

end for
end while
return x ;



Implication of Functional Dependencies

Compute the cover {ISBN}+ for the following FDs:

ISBN→ TITLE, PUBLISHER

ISBN, NO→ AUTHOR

PUBLISHER→ PUB_URL

1. We start with x = {ISBN}.
2. The FD ISBN→ TITLE, PUBLISHER is applicable since the

left-hand side of is completely contained in x .
We get x = {ISBN, TITLE, PUBLISHER}.

3. Now the FD PUBLISHER→ PUB_URL is applicable.
We get x = {ISBN, TITLE, PUBLISHER, PUB_URL}.

4. No further way to extend set x , the algorithm returns

{ISBN}+ = {ISBN, TITLE, PUBLISHER, PUB_URL}

5. We may now conclude, e.g., ISBN→ PUB_URL.



How to Determine Keys

Given a set of FDs and the set of all attributes A of a relation R:

α ⊆ A is key of R ⇐⇒ α+ = A

That is α is a key if the cover α+ contains all attributes.

We can use FDs to determine all possible keys of R.

Remember: normally, we are interested in minimal keys only.

A key α is minimal if every A ∈ α is vital, that is

(α− {A})+ 6= A



How to Determine Keys

Finding a Minimal Key

Input: A (set of all attributes of R)
α1 → β1, . . . , αn → βn (set of FDs F)

Output: α (a minimal key of R)

x = A;
for all attributes A ∈ X do

if A ∈ {x − A}+F then
x = x − A; (remove A from x)

end if
end for
return x ;

We might get different keys depending on the order in for all.



How to Determine Keys

Finding all Minimal Keys

Input: A1,A2, . . . ,An (all attributes of R) and F (set of FDs)

Results = ∅;
Candidates = {{A1}, {A2}, . . . , {An}};
while Candidates 6= ∅ do

choose and remove a smallest κ ∈ Candidates;
if κ+F = {A1,A2, . . . ,An} then

if κ contains no key in Results then
Results = Results ∪ {κ};

end if
else

for all Ai 6∈ κ+F do
κi = κ ∪ {Ai };
Candidates = Candidates ∪ {κi };

end for
end if

end while
return Results;



How to Determine Keys

Finding all minimal keys
Find all minimal keys the relation R

R

A B C D E

with the functional dependencies

A, D→ B, D

B, D→ C

A→ E

C, D, E→ A

using the algorithm on the previous slide.



Determinants

Determinants (Non-trivial, minimal FDs)
The attribute set A1, . . . ,An is called a determinant for attribute
set B1, . . . ,Bm if and only if

the FD A1, . . . ,An → B1, . . .Bm holds, and
the lhs is minimal, i.e., whenever any Ai is removed then
A1, . . . ,Ai−1,Ai+1,An → B1, . . .Bm does not hold, and
the lhs and rhs are distinct, i.e., {A1, . . . ,An} 6= {B1, . . . ,Bm}.

F =

{
STUD_ID, EX_NO → POINTS

EX_NO → MAX_POINTS

}
Are the following determinants?

POINTS, MAX_POINTS for POINTS, MAX_POINTS ? No
EX_NO for POINTS, MAX_POINTS ? No
STUD_ID, EX_NO for POINTS, MAX_POINTS ? Yes
EX_NO, POINTS for POINTS, MAX_POINTS ? Yes



Relational Normal Forms

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-based Normal Forms

3. Multivalued Dependencies (MVDs) and 4NF

4. Normal Forms and ER Design

5. Denormalization



Consequences of Bad DB Design

Usually a severe sign of bad DB design if a table contains an
FD (encodes a partial function) that is not implied by a key.

INAME→ PHONE

COURSES

CRN TITLE INAME PHONE
22268 Databases I Grust 7111
42232 Functional Programming Grust 7111
31822 Graph Theory Klotz 2418

This leads to
redundant storage of certains facts
(here, phone numbers)

insert, update, deletion anomalies



Consequences of Bad DB Design

Redundant storage is bad for several reasons:

it wastes storage space

difficult to ensure integrity when updating the database
all redundant copies need to be updated
wastes time, inefficient

need for additional constraints to guarantee integrity
ensure that the redundant copies indeed agree
e.g. the constraint INAME→ PHONE

Problem
General FDs are not supported by relational databases.

The solution is to transform FDs into key constraints.
This is what DB normalization tries to do.



Consequences of Bad DB Design

Update anomalies
When a single value needs to be changed (e.g., a phone
number), multiple tuples must be updated. This
complicates programs and updates takes longer.
Redundant copies potentially get out of sync and it is
impossible/hard to identify the correct information.

Insertion anomalies
The phone number of a new instructor cannot be inserted
into the DB until it is known what course she/he will teach.
Insertion anomalies arise when unrelated concepts are
stored together in a single table.

Deletion anomalies
When the last course of an instructor is deleted, his/her
phone number is lost.



Boyce-Codd Normal Form

A relation R is in Boyce-Codd Normal Form (BCNF) if and
only if all its FDs are implied by its key constraints.
That is, for any FD A1, . . . ,An → B1, . . . ,Bm of R we have:

{B1, . . . ,Bm} ⊆ {A1, . . . ,An} (the FD is trivial), or
{A1, . . . ,An} contains a key of R.

The relation
COURSES (CRN, TITLE, INAME, PHONE)

with the FDs
CRN → TITLE, INAME, PHONE

INAME → PHONE

is not in BCNF because of the FD INAME→ PHONE:
the FD is not trivial, and
INAME is not a key

However, the relation COURSES (CRN, TITLE, INAME) without
the attribute PHONE is in BCNF.



Boyce-Codd Normal Form: Examples

Each course meets once per week in a dedicated room:

CLASS (CRN, TITLE, WEEKDAY, TIME, ROOM)

The relation thus satisfies the following FDs (plus implied ones):

CRN → TITLE, WEEKDAY, TIME, ROOM
WEEKDAY, TIME, ROOM → CRN

The keys of CLASS are
{ CRN }

{ WEEKDAY, TIME, ROOM }

Is the relation in BCNF?
both FDs are implied by keys
(their left-hand sides even coincide with the keys)

Thus CLASS is in BCNF.



Boyce-Codd Normal Form: Examples

Consider the relation

PRODUCT (NO, NAME, PRICE)

and the following FDs:

NO → NAME
NO → PRICE

PRICE, NAME → NAME
NO, PRICE → NAME

Is this relation in BCNF?
The two left FDs indicate that NO is a key.
Both FDs are thus implied by a key.
The third FD is trivial (and may be ignored).
The left-hand side of the last FD contains a key.

Thus the relation PRODUCT is in BCNF.



Boyce-Codd Normal Form

Alternative characterisation of Boyce-Codd Normal Form:

BCNF⇐⇒ every determinant is key

Advantages of Boyce-Codd Normal Form

If a relation R is in BCNF, then. . .
Ensuring its key constraints automatically satisfies all FDs.
Hence, no additional constraints are needed!

The anomalies (udpate/insertion/deletion) do not occur.



Boyce-Codd Normal Form: Quiz

BCNF Quiz

1. Is the relation

RESULTS (STUD_ID, EX_NO, POINTS, MAX_POINTS)

with the following FDs in BCNF?

STUD_ID, EX_NO → POINTS
EX_NO → MAX_POINTS

2. Is the relation

INVOICE (INV_NO, DATE, AMOUNT, CUST_NO, CUST_NAME)

with the following FDs in BCNF?

INV_NO → DATE, AMOUNT, CUST_NO
INV_NO, DATE → CUST_NAME

CUST_NO → CUST_NAME
DATE, AMOUNT → DATE



Third Normal Form

A key attribute is an attribute that appears in a minimal key.
Minimality is important, otherwise all attributes are key attributes.

Assume that FDs with multiple attributes on rhs have been expanded.
That is, every FD has a single attribute on the right-hand side.

Third Normal Form (3NF)
A relation R is in Third Normal Form (3NF) if and only if every
FD A1, . . . ,An → B satisfies at least one of the conditions:

B ∈ {A1, . . . ,An} (the FD is trivial), or
{A1, . . . ,An} contains a key of R, or
B is a key attribute of R.

The only difference with BCNF is the last condition.

Third Normal Form (3NF) is slightly weaker than BCNF:
If a relation is in BCNF, it is automatically in 3NF.



Third Normal Form

In short, we can say:

BCNF ⇐⇒ for every non-trivial FD:
the left-hand side contains a key

3NF ⇐⇒ for every non-trivial FD:
the left-hand side contains a key, or
the right-hand side is an attribute of a minimal key

Alternative characterisation of 3NF:

3NF ⇐⇒ every determinant of a non-key attribute is a key



Third Normal Form Quiz

3NF vs BCNF
BOOKINGS

COURT START_TIME END_TIME RATE
1 9:30 11:00 SAVER
2 9:30 12:00 PREMIMUM-A
1 12:00 14:00 STANDARD

The table contains bookings for one day at a tennis club:
there are courts 1 (hard court) and 2 (grass court)
the rates are

SAVER for member bookings of court 1
STANDARD for non-member bookings of court 1
PREMIMUM-A for member bookings of court 2
PREMIMUM-B for non-member bookings of court 2

Quiz:
Find a representative FDs set.
Is the table in BCNF? Is the table in 3NF?



Splitting Relations

If a table R is not in BCNF, we can split it into two tables.
the violating FD determines how to split

Table Decomposition
If the FD A1, . . . ,An → B1, . . .Bm violates BCNF:

create a new relation S(A1, . . . ,An,B1, . . . ,Bm) and
remove B1, . . . ,Bm from the original relation R.

Splitting “along an FD”
The FD INAME→ PHONE is the reason why table

COURSES (CRN, TITLE, INAME, PHONE)

violates BCNF because of INAME→ PHONE. We split into:

INSTRUCTORS (CRN, TITLE, INAME)
PHONEBOOK (INAME, PHONE)



Splitting Relations

It is important that this splitting transformation is lossless, i.e.,
that the original relation can be reconstructed by a join.

Reconstruction after split
Recall that we have split

COURSES (CRN, TITLE, INAME, PHONE)

into tables
INSTRUCTORS (CRN, TITLE, INAME)

PHONEBOOK (INAME, PHONE)

We can reconstruct the original table as follows:
CREATE VIEW COURSES (CRN, TITLE, INAME, PHONE)

AS
SELECT I.CRN, I.TITLE, I.INAME, P.PHONE
FROM INTSTRUCTORS I, PHONEBOOK P

WHERE I.INAME = P.INAME



Splitting Relations

When is a split lossless?

Decomposition Theorem
The split of relations is guaranteed to be lossless if the
intersection (the shared set attributes) of the attributes of the
new tables is a key of at least one of them.

The join 1 connects tuples depending on the attribute (values) in the
intersection. If these values uniquely identify tuples in the other relation we
do not lose information.

“Lossy” decomposition
Original table Decomposition “Reconstruction”
(key A,B,C) R1 R2 R1 1 R2

A B C
a11 b11 c11
a11 b11 c12
a11 b12 c11

A B
a11 b11
a11 b12

A C
a11 c11
a11 c12

A B C
a11 b11 c11
a11 b11 c12
a11 b12 c11
a11 b12 c12



Splitting Relations

Lossless split condition satisfied
Recall that we have split

COURSES (CRN, TITLE, INAME, PHONE)

into tables
INSTRUCTORS (CRN, TITLE, INAME)

PHONEBOOK (INAME, PHONE)

The lossless split condition is satisfied since
{CRN, TITLE, INAME} ∩ {INAME, PHONE} = {INAME}

and INAME is a key of the table PHONEBOOK.

All splits initiated by the table decomposition method for
transforming relations into BCNF satisfy the condition of the
decomposition theorem.

It is always possible to transform a relation into BCNF by
lossless splitting (if necessary, split repeatedly).



Splitting Relations

Not every lossless split is reasonable!

STUDENTS

SSN FIRST_NAME LAST_NAME
111-22-3333 John Smith
123-45-6789 Maria Brown

Splitting STUDENTS into

STUD_FIRST (SSN, FIRST_NAME)
STUD_LAST (SSN, LAST_NAME)

is lossless, but
the split is not necessary to enforce a normal form,
only requires costly joins in subsequent queries



Splitting Relations

Lossless split guarantees that the resulting schema (after
splitting) can represent all DB states that were possible before.

we can translate states from the old into the new schema
we may “simulate” the old schema via views

Lossless splits can lead to more general schemas!
the new schema allows states which do not correspond to
the state in the old schema

Recall that we have split
COURSES (CRN, TITLE, INAME, PHONE)

into tables
INSTRUCTORS (CRN, TITLE, INAME)

PHONEBOOK (INAME, PHONE)

We may now store instructors and phone numbers without any
affiliation to courses.



Splitting Relations: Computable Columns

Although computable columns lead to violations of BCNF,
splitting the relation is not the right solution.

E.g. AGE which is derivable from BIRTDATE.

As a consequence we have a functional dependency:

BIRTDATE→ AGE

A split would yield a relation:

R(BIRTHDAY, AGE)

which would try to materialise the computable function.

The correct solution is to eliminate AGE from the table and to
define a view which contains all columns plus the computed
column AGE (invoking a SQL stored procedure).



Preservation of Functional Dependencies

Besides losslessness, a property which a good decomposition
of a relation should guarantee is the preservation of FDs:

The problem is that an FD can refer only to attributes of a
single relation.
When you split a relation into two, there might be FDs that
can no longer be expressed (these FDs are not preserved).

FD gets lost during decomposition
ADRESSES (STREET_ADDR, CITY, STATE, ZIP)

with functional dependencies
STREE_ADDR, CITY, STATE → ZIP

ZIP → STATE

The second FD violates BCNF and would lead to the split:
ADDRESSES1 (STREET_ADDR, CITY, ZIP) and
ADDRESSES2 (ZIP, STATE).

But now the first FD can no longer be expressed.
�



Preservation of Functional Dependencies

ADRESSES (STREET_ADDR, CITY, STATE, ZIP)

with functional dependencies
STREE_ADDR, CITY, STATE → ZIP

ZIP → STATE

Is the table in 3NF? Yes
Most designers would not split the table since it is in 3NF.
Pro split: if there are many addresses with the same ZIP
code, there will be significant redundancy.
Contra split: queries will involve more joins.

Whether or not to split depends on the intended application:
A table of ZIP codes might be of interest on its own.
E.g. it this were a database for a mailing company.



3NF Synthesis Algorithm

The following algorithm, the synthesis algorithm, produces a
lossless decomposition of a given relation into 3NF relations
that preserve the FDs.

Determine a minimal (canonical) set of FDs that is equivalent
to the given FDs F as follows:

1. Replace every FD α→ B1, . . . ,Bm by α→ Bi , 1 6 i 6 m.
2. Minimise: For each A1, . . . ,An → B and each i = 1, . . . ,n

Compute the cover {A1, . . . ,Ai−1,Ai+1, . . . ,An}
+
F .

If the result contains B, replace F by

F ′ = (F − {A1, . . . ,An → B})

∪ {A1, . . . ,Ai−1,Ai+1, . . . ,An → B}

Keep repeating until all left-hand sides are minimal.
3. Remove implied FDs: For each FD α→ B

Compute the cover α+
F ′ where F ′ = F − {α→ B}.

If the cover contains B continue with F ← F ′.



3NF Synthesis Algorithm

Compute the canonical set of FDs for

A, B, C→ D, E

B→ C

B→ E

C→ E

C, D→ D, F



3NF Synthesis Algorithm

3NF Synthesis Algorithm
Input: relation R and a set of FDs for R.

1. Compute a canonical (minimal) set of FDs F .

2. For each left-hand side α of an FD in F create a relation
with attributes A = α ∪ {B |α→ B ∈ F }.

3. If none of the relations constructed in step 2 contains a key
of the original relation R, add one relation containing the
attributes of a minimal key of R.

4. For any two relations R1, R2 constructed in steps 2,3, if the
schema of R1 is contained in the schema R2, discard R1.



3NF Synthesis Algorithm: Example

Use the 3NF synthesis algorithm to normalise the relation

R (A,B,C,D,E,F)

with the following canonical functional dependencies:

A→ D

B→ C

B→ D

D→ E



Efficiency Considerations: BCNF vs 3NF

BCNF does not retain all FDs, therefore 3NF is popular.

Database systems are good at checking key constraints,
because they create an index on the key columns.

If we leave a table in 3NF (and not BCNF), we have non-key
constraints. Namely those FDs that are not implied by keys.

Sometimes we can enforce non-key constraints as follows:
create a materialised view that contains the non-key FD
(a selection of the columns of the FD)

define the key constraint on the materialised view
updates to the table will cause updates to the view through
constraint checking is index-based, hence efficient



Summary

Tables should not contain FDs other than those implied by
the keys (i.e., all tables should be in BCNF).
Such violating FDs indicate the combination of pieces of information
which should be stored separately (presence of an embedded function).
This leads to redundancy.

A relation may be normalized by splitting it.
Normalization to BCNF might not preserve FDs.
Normalization to 3NF preserevs FDs.

Sometimes it may make sense to avoid a split
(and thus to violate BCNF).
The DB designer has to carefully resolve such scenarios, incorporating
application or domain knowledge.



Relational Normal Forms

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-based Normal Forms

3. Multivalued Dependencies (MVDs) and 4NF

4. Normal Forms and ER Design

5. Denormalization



Introduction

The development of BCNF/3NF has been guided by a
particular type of constraint: functional dependencies.

The goal of normalization into BCNF/3NF is to
elimminate the redundant storage of data that follows from
these constraints, and to
transform tables such that the constraints are automatically
enforced by means of keys

However, there are further types of constraints which are
also useful to during DB design.



Introduction

Recall the Decomposition Theorem
The split of relations is guaranteed to be lossless if the
intersection (the shared set attributes) of the attributes of the
new tables is a key of at least one of them.

The condition in the decomposition theorem is only
sufficient (it guarantees losslessness),
but not necessary (a decomposition might be lossless
even if the condition is not satisfied).

Multivalued dependencies (MVDs) are constraints that give a
necessary and sufficient condition for lossless decomposition

MVDs lead to the Fourth Normal Form (4NF).



Multivalued Dependencies

The following table shows for each employee:
knowledge of programming languages
knowledge of programming DBMSs

EMP_KNOWLEDGE

ENAME PROG_LANG DBMS
John Smith C Oracle
John Smith C DB2
John Smith C++ Oracle
John Smith C++ DB2
Maria Brown Prolog PostgreSQL
Maria Brown Java PostgreSQL

There are no non-trivial functional dependencies.
The table is in BCNF.

Nevertheless, there is redundant information.



Multivalued Dependencies

The table contains redundant data & must be split.

EMP_LANG

ENAME PROG_LANG
John Smith C
John Smith C++
Maria Brown Prolog
Maria Brown Java

EMP_DBMS

ENAME DBMS
John Smith Oracle
John Smith DB2
Maria Brown PostgreSQL

Note: table may only be decomposed if PROG_LANG and DBMS are
independent; otherwise loss of information.

E.g. it may not be decomposed if the semantics of the table is that the
employee knows the interface between the language and the database.



Multivalued Dependencies

The multivalued dependency (MVD)

ENAME� PROG_LANG

means that the set of values in column PROG_LANG associated
with every ENAME is independent of all other columns.

EMP_KNOWLEDGE

ENAME PROG_LANG DBMS
John Smith C Oracle
John Smith C DB2
John Smith C++ Oracle
John Smith C++ DB2
Maria Brown Prolog PostgreSQL
Maria Brown Java PostgreSQL

That is, the table contains an

embedded function from ENAME to sets of PROG_LANG



Multivalued Dependencies

Formally, ENAME� PROG_LANG holds if: whenever two tuples
agree on ENAME, one can exchange their PROG_LANG values and
the resulting tupes are in the same table.

From the two table rows

ENAME PROG_LANG DBMS
John Smith C Oracle
John Smith C++ DB2

and the MVD ENAME� PROG_LANG, we can conclude that the table
must also contain the following rows:

ENAME PROG_LANG DBMS
John Smith C++ Oracle
John Smith C DB2

This expresses the independence of PROG_LANG for a given
ENAME from the rest of the table columns.



Multivalued Dependencies

Multivalued Dependency
A multivalued dependency (MVD)

A1, . . . ,An � B1, . . . ,Bm

is satisfied in a DB state I if and only if
for all tuples t ,u in I(R) with t .Ai = u.Ai ,1 6 i 6 n,

there are two further tuples t ′,u ′ in I(R) such that
1. t ′ agrees with t except that t ′.Bi = u.Bi ,1 6 i 6 m, and
2. u ′ agrees with u except that u ′.Bi = t .Bi ,1 6 i 6 m.

The condition means that the values of the Bi are swapped:

a1, . . . ,an, b1, . . . ,bm, c1, . . . , ck

a1, . . . ,an, b ′
1, . . . ,b

′
m, c ′

1, . . . , c
′
k

t

u

a1, . . . ,an, b ′
1, . . . ,b

′
m, c1, . . . , ck

a1, . . . ,an, b1, . . . ,bm, c ′
1, . . . , c

′
k

t ′

u ′



Multivalued Dependencies

Multivalued dependencies always come in pairs!

If ENAME� PROG_LANG holds, then ENAME� DBMS is automatically
satisfied.

More general:

For a relation R(A1, . . . ,An,B1, . . . ,Bm,C1, . . . ,Ck ),
the following multivalued dependencies are equivalent

A1, . . . ,An � B1, . . . ,Bm

A1 . . . ,An � C1, . . . ,Ck

Swapping the Bj values in two tuples is the same as swapping the values for
all other columns (the Ai values are identical, so swapping them has no
effect).



Multivalued Dependencies

If the FD A1, . . .An → B1, . . .Bm holds, the corresponding MVD

A1, . . . ,An � B1, . . . ,Bm

is trivially satisfied.

The FD means that if tuples t , u agree on the Ai then also on the Bj .
Swapping thus has no effect (yields t , u again).

Deduction rules to derive all implied FDs/MVDs
The three Armstrong Axioms for FDs.
If α� β then α� γ, where γ are all remaining columns.
If α1 � β1 and α2 ⊇ β2 then α1 ∪ α2 � β1 ∪ β2.
If α� β and β� γ then α� (γ− β).
If α→ β, then α� β.
If α� β and β ′ ⊆ β and there is γ with γ ∩ β = ∅ and
γ→ β ′, then α→ β ′.



Fourth Normal Form

Fourth Normal Form (4NF)
A relation is in Fourth Normal Form (4NF) if every MVD

A1, . . . ,An � B1, . . . ,Bm

is
either trivial, or
implied by a key.

Note: this definition of 4NF is very similar to BCNF but with a
focus on implied MVDs (not FDs).

Since every FD is also an MVD, 4NF is stronger than BCNF.
That is, if a relation is in 4NF, it is automatically in BCNF.

However, it is not very common that 4NF is violated, but BCNF is not.



Fourth Normal Form

The relation

EMP_KNOWLEDGE (ENAME, PROG_LANG, DBMS)

is an example of a relation that is in BCNF, but not in 4NF.

The relation has no non-trivial FDs.



Other Constraints

Multiple choice test
The following relation encodes the correct solution to a typical
multiple choice test:

ANSWERS

QUESTION ANSWER TEXT CORRECT
1 A ... Y
1 B ... N
1 C ... N
2 A ... N
2 B ... Y
2 C ... N

Using keys to enforce other constraints
The constraint is not an FD, MVD, or JD:

“Each question can only have one correct answer.”

Can you suggest a transformation of table ANSWERS such
that the above constraint is already implied by a key?



Relational Normal Forms

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-based Normal Forms

3. Multivalued Dependencies (MVDs) and 4NF

4. Normal Forms and ER Design

5. Denormalization



Introduction

If a “good” ER schema is transformed into the relational model,
the result will satisfy all normal forms (4NF, BCNF, 3NF).

A normal form violation detected in the generated
relational schema indicates a flaw in the input ER schema.

This needs to be corrected on the ER level.

FDs in the ER model
The ER equivalent of the very first example in this chapter:

courses

crn
title

iname

phone

Obviously, the FD iname→ phone
leads to a violation of BCNF in the
resulting table for entity Course.
Also in the ER model, FDs between
attributes of an entity should be implied
by a key constraint.



Examples

In the ER model, the solution is the “same” as in the relational
model: we have to split the entity.

ER entity split
In this case, the instructor is an independent entity:

courses

crn
title

instructor

iname

phone

given_by 1..10..∗



Examples

Functional dependencies between attributes of a relationship
always violate BCNF.

Violation of BCNF on the ER level

customer product

custNo prodNo

orders
0..∗ 0..∗

orderNo

date

The FD orderNo→ date violates BCNF.
The key of the table corresponding to the relationship
“orders” consists of the attributes CustNo, ProdNo.

This shows that the concept “order” is an independent entity.



Examples

Violations of BCNF might also be due to the wrong placement
of an attribute.

Questionable attribute placement

student course

studId crn

takes
0..∗ 0..∗

email

The relationship is translated into
TAKES (STUD_ID, CRN, EMAIL)

Then the FD STUD_ID→ EMAIL violates BCNF.
Obviously, email should be an attribute of Student.



Examples

If an attribute of a ternary relationship depends only on two of
the entities, this violates BCNF.

Ternary relationship

instructor course

term

taught

room

If every course is taught only once per term, then attribute room
depends only on term and course (but not instructor).

Then the FD TERM, COURSE→ ROOM violates BCNF.



Normalization: Summary

Relational normalization is about:
Avoiding redundancy.
Storing separate facts (functions) separately.
Transforming general integrity constraints into
constraints that are supported by the DBMS: keys.

Relational normalization theory is mainly based on FDs,
but there are other types of constraints (e.g., MVDs).



Relational Normal Forms

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-based Normal Forms

3. Multivalued Dependencies (MVDs) and 4NF

4. Normal Forms and ER Design

5. Denormalization



Denormalization

Denormalization is the process of adding redundant
columns to the database in order to improve performance.

Redundant data storage
For example, if an application extensively access the phone
number of instructors, performance-wise it may make sense to
add column PHONE to table COURSES.

COURSES

CRN TITLE INAME PHONE

This avoids the otherwise required joins (on attribute INAME)
between tables COURSES and PHONEBOOK.



Denormalization

Since there is still the separate table PHONEBOOK, insertion
and deletion anomalies are avoided.

But there will be update anomalies (changing a single
phone number requires the update of many rows).

The performance gain is thus paid for with
a more complicated application logic
(e.g., the need for triggers)
and the risk that a faulty application will turn the DB
inconsistent

Denormalization may not only be used to avoid joins:
Complete separate, redundant tables may be created
(increasing the potential for parallel operations).
Columns may be added which aggregate information in
other columns/rows.



Relational Normal Forms: Objectives

After completing this chapter, you should be able to
work with functional dependencies (FDs),

define what they are
detect them in database schemas
decide implication, determine keys

explain insert, update, and delete anomalies,
understand, explain and use BCNF

test a given relation for BCNF, and
transform a relation into BCNF

understand, explain and use 3NF
test a given relation for 3NF, and
transform a relation into 3NF

understand, explain MVDs and 4NF
detect normal form violations on the level of ER,
explain when and how to denormalize a DB schema


