
Databases – Database Normalisation

Jörg Endrullis

VU University Amsterdam

Database Normalisation :: Introduction

Introduction

Functional Dependencies (FDs)
are a generalization of keys
central part of relational database design theory

This theory defines when a relation is in normal form.

Usually a sign of bad database design if a schema contains
relations that violate the normal form.

If a normal form is violated
data is stored redundantly and
information about different concepts is intermixed

Courses

courseNr title instructor phone
230 Databases I Arthur 9002
415 Functional Programming Arthur 9002
301 Graph Theory Marvin 8020

The phone number for each instructor is stored multiple times!

Introduction

There are different normal forms. The main ones are:

Third Normal Form (3NF): the standard relational normal
form used in practice (and education).

Boyce-Codd Normal Form (BCNF):
a bit more restrictive
easier to define
better for our intuition of good database design

Roughly speaking, BNCF requires that all FDs are keys.

In rare circumstances, a relation might not have an equivalent
BCNF form while preserving all its FDs.
The 3NF normal form always exists (and preserves the FDs).

Introduction

Normalization algorithms can construct good relation
schemas from a set of attributes and a set of functional
dependencies.

In practice:
relations are derived from entity-relationship models
normalization is used as an additional check only

When an ER model is well designed, the resulting derived
relational tables will automatically be in BCNF.

Awareness of normal forms can help to detect design errors
already in the conceptual design phase.

Database Normalisation :: First Normal Form

First Normal Form

The First Normal Form (1NF) requires that all table entries
are atomic (not lists, sets, records, relations).

In the relational model all table entries are already atomic.

All further normal forms assume that tables are in 1NF!

The following are not violations of 1NF:
a table entry contains values with internal structure

e.g. a char(100) containing a comma separated list
a list represented by several columns

e.g. columns value1, value2, value3

Nevertheless, these are bad design.

Database Normalisation :: Functional Dependencies

Functional Dependencies

Courses

courseNr title instructor phone
230 Databases I Arthur 9002
415 Functional Programming Arthur 9002
301 Graph Theory Marvin 8020

A functional dependency (FD) in this table is

instructor→ phone

Whenever two rows agree in the instructor name, they must
also agree in the phone number!

Intuitively, this is a FD since the phone number only depends
on the instructor, not on the other attributes.

Functional Dependencies

A functional dependency (FD)

{A1, . . . ,An }→ {B1, . . . ,Bm }

holds for a relation R in a database state I if and only if

t .A1 = u.A1 ∧ · · ·∧ t .An = u.An⇒ t .B1 = u.B1 ∧ · · ·∧ t .Bm = u.Bm

for all tuples t ,u ∈ I(R).

Usually, we do not write the set brackets { and }.

A functional dependency is like a partial key: uniquely
determines some attributes, but not all in general.

We read functional dependencies as
A1, . . . ,An (functionally, uniquely) determine B1, . . . ,Bm

Functional Dependencies

A functional dependency with m attributes on the right

A1, . . .An → B1, . . .Bm

is equivalent to the m FDs:

A1, . . . ,An → B1...
...

A1, . . . ,An → Bm

A,B → C,D

is equivalent to the combination of

A,B → C A,B → D

but not equivalent to

A→ C,D B → C,D

So, in the sequel it suffices to consider functional dependencies
with a single column name on the right-hand side.

Database Normalisation ::
Keys vs. Functional Dependencies

Keys are Functional Dependencies

Keys are functional dependencies
{A1, . . . ,An } is a key of relation R(A1, . . . ,An,B1, . . . ,Bm)⇐⇒ the functional dependency A1, . . . ,An → B1, . . .Bm holds.

A key uniquely determines all attributes of its relation.

Courses

courseNr title instructor phone
230 Databases I Arthur 9002
415 Functional Programming Arthur 9002
301 Graph Theory Marvin 8020

We have the following functional dependencies:
courseNr→ title, instructor, phone

or equivalently:
courseNr→ title

courseNr→ instructor
courseNr→ phone

Functional Dependencies are Partial Keys

Functional dependencies are partial keys
The functional dependency

A1, . . . ,An → B1, . . . ,Bm

holds for a relation R if { A1, . . .An } is a key for the relation
obtained by restricting R to columns {A1, . . . ,An,B1, . . . ,Bm }.

The restriction of the table Courses to { instructor, phone } is:

instructor phone
Arthur 9002
Marvin 8020

Here instructor is a key. So instructor→ phone in Courses.

The goal of database normalization is to turn FDs into keys.
The DBMS is then able to enforce the FDs for the user.

Database Normalisation ::
Functional Dependencies are Constraints

Functional Dependencies are Constraints

Functional dependencies are constraints (like keys).

Courses

courseNr title instructor phone
230 Databases I Arthur 9002
415 Functional Programming Arthur 9002
301 Graph Theory Marvin 8020

In this example state, the functional dependency
title→ courseNr

holds. But this is probably not true in general!

For the database design, the only interesting functional
dependencies are those that hold for all intended states.

Example: Books and Authors

Books

author no title publisher isbn
Baader 1 Term Rewriting Cambridge Uni. 0521779200
Nipkow 2 Term Rewriting Cambridge Uni. 0521779200
Graham 1 Concrete Mathematics Addison-Wesley 0201558025
Knuth 2 Concrete Mathematics Addison-Wesley 0201558025

Patashnik 3 Concrete Mathematics Addison-Wesley 0201558025

A book may have multiple authors, one author per row.
The attribute no is used to indicate the order of the authors.

isbn→ title, publisher (ISBN uniquely identifies a book)
isbn→ author ? Does not hold.
author→ title ? Does not hold in general.
title→ ∅ (There may be books with the same title)

isbn, no→ author
isbn, author→ no ? questionable (e.g. Smith & Smith)
publisher, title, no→ author ? questionable
Authorship sequence might change in a new edition of a book!

Example: Books and Authors

Books

author no title publisher isbn
Baader 1 Term Rewriting Cambridge Uni. 0521779200
Nipkow 2 Term Rewriting Cambridge Uni. 0521779200
Graham 1 Concrete Mathematics Addison-Wesley 0201558025
Knuth 2 Concrete Mathematics Addison-Wesley 0201558025

Patashnik 3 Concrete Mathematics Addison-Wesley 0201558025

A book may have multiple authors, one author per row.
The attribute no is used to indicate the order of the authors.

During database design, only unquestionable conditions
should be used as functional dependencies.

Database normalization alters the table structure depending
on the specified functional dependencies.

Later hard to change: needs creation/deletion of tables!

Quiz

A table with homework grades:

HomeworkResults

sid first last exercise points maxPoints
100 Andrew Smith 1 9 10
101 Dave Jones 1 8 10
102 Maria Brown 1 10 10
101 Dave Jones 2 11 12
102 Maria Brown 2 10 12

Which FDs should hold for this table in general?
sid→ first, last

exercise→ maxPoints
sid, exercise→ first, last, points, maxPoints (a key)

Identify FDs that hold in this table but not in general.
first→ last
first, last→ sid (prevents students with same name)

Database Normalisation ::
Implication of Functional Dependencies

Implication of Functional Dependencies

If A→ B and B → C hold, then A→ C is holds automatically.

Courses

courseNr title instructor phone
230 Databases I Arthur 9002
415 Functional Programming Arthur 9002
301 Graph Theory Marvin 8020

Note that courseNr→ phone is a consequence of

courseNr→ instructor

instructor→ phone

FDs of the form A→ A always hold.

E.g. phone→ phone holds, but is not interesting

Implication of Functional Dependencies

Implication of Functional Dependencies
A set of FDs Γ implies an FD α→ β⇐⇒
every DB state which satisfies all FDs in Γ , also satisfies α→ β.

The DB designer is normally not interested in all FDs, but only
in a representative FD set that implies all other FDs.

How to determine whether Γ implies α→ β ?

Armstrong Axioms

All implied FDs can be derived using the Armstrong axioms.

Armstrong axioms
Reflexivity: if β ⊆ α, then α→ β.
Augmentation: if α→ β, then α ∪ γ→ β ∪ γ.
Transitivity: if α→ β and β→ γ, then α→ γ.

Use the Amstrong axioms to show that
1. isbn→ title, publisher

2. isbn, no→ author

3. publisher→ publisherURL

implies isbn→ publisherURL.

4. title, publisher→ publisher by reflexivity

5. isbn→ publisher by transitivity using 1. and 4.

6. isbn→ publisherURL by transitivity using 5. and 3.

Covers

Simpler way to check if α→ β is implied by a set F of FDs:
compute the cover α+

F of α, and
then check if β ⊆ α+

F .

Cover
The cover α+

F of attributes α with respect to a set F of FDs is

α+
F := { A | F implies α→ A } ,

the set of all attributes A that are uniquely determined by α.

The cover γ+F can be computed as follows:
Let x = γ, and repeat the next step until x is stable.
If α ⊆ x for some (α→ β) ∈ F , then let x = x ∪ β.

Finally x is the cover γ+F of γ with respect to the set F of FDs.

A set of FDs F implies an FD α→ β if and only if β ⊆ α+
F .

Covers

Consider the following set F of FDs:
1. isbn→ title, publisher

2. isbn, no→ author

3. publisher→ publisherURL

Compute the cover {isbn}+F :
We start with x = { isbn }.
FD 1 is applicable since { isbn } ⊆ x .
We get x = { isbn, title, publisher }.
FD 3 is applicable since { publisher } ⊆ x .
We get x = { isbn, title, publisher, publisherURL }.

No further way to extend set x , thus

{isbn}+F = { isbn, title, publisher, publisherURL }

We may now conclude, e.g., isbn→ publisherURL.

Database Normalisation :: Determinants

Determinants

Determinants (Non-trivial, minimal FDs)
{A1, . . . ,An } is a determinant for {B1, . . . ,Bm } if

the FD A1, . . . ,An → B1, . . .Bm holds, and
the left-hand side is minimal, that is, if any Ai is removed
then A1, . . . ,Ai−1,Ai+1,An → B1, . . .Bm does not hold, and
it is not trivial, that is, {B1, . . . ,Bm} 6⊆ {A1, . . . ,An}.

(In a canonical set of FDs, all FDs are determinants.)

F =

{
sid, exercise → points

exercise → maxPoints

}
Are the following determinants?

points, maxPoints for points, maxPoints ? No
exercise for points, maxPoints ? No
sid, exercise for points, maxPoints ? Yes
exercise, points for points, maxPoints ? Yes

Database Normalisation ::
Canonical Set of Functional Dependencies

Canonical Set of Functional Dependencies

Computing a Canonical Set of Functional Dependencies
Let a set of FDs F be given. Determine a minimal (canonical)
set of FDs that is equivalent to F by transforming F as follows:

1. Make the right-hand sides singular

Replace every FD α→ B1, . . . ,Bm by α→ Bi , 1 6 i 6 m.

2. Minimise left-hand sides

For each FD α→ B and attribute A ∈ α:
If B ∈ (α− {A })+F , replace α→ B by (α− {A })→ B in F .

3. Remove implied FDs

For each FD α→ B:
If B ∈ α+

G for G = F − {α→ B}, then drop α→ B from F .

Repeat steps 2 and 3 until nothing can be removed.

Canonical Set of Functional Dependencies

Consider the relation R(A,B,C,D,E) with FDs

A→ D,E B → C B,C → D D → E

1. Make the right-hand sides singular

A→ D A→ E B → C B,C → D D → E

2. Minimise left-hand sides

A→ D A→ E B → C B → D D → E

We drop C from B,C → D since D ∈ {B }+ due to B → C.
3. Remove implied FDs

A→ D B → C B → D D → E

A→ E can still be derived from A→ D and D → E .

Thus we have obtained the following canonical set of FDs:

A→ D B → C B → D D → E

Canonical Set of Functional Dependencies

Compute the canonical set of FDs for
A,B,C → D,E B → C B → E C → E C,D → D,F

1. Make the right-hand sides singular
A,B,C → D B → C B → E C → E C,D → D
A,B,C → E C,D → F

2. Removing implied FDs:
A,B,C → E B → E C,D → D

This results in
A,B,C → D B → C C → E C,D → F

3. Minimise left-hand sides
A,B → D B → C C → E C,D → F

We drop C from A,B,C → D since D ∈ {A,B }+.

There is nothing more that can be removed.

Database Normalisation :: How to Determine Keys

How to Determine Keys

Given a set of FDs and the set A of all attributes of a relation R:

α ⊆ A is key of R ⇐⇒ α+ = A

That is α is a key if the cover α+ contains all attributes.

We can use FDs to determine all possible keys of R.

Normally, we are interested in minimal keys only.

A key α is minimal if every A ∈ α is vital, that is

(α− {A})+ 6= A

Finding a Minimal Key

Finding a Minimal Key

Let A be the attributes of the relation R, and F a set of FDs.
Let x = A.
If A ∈ (x − {A })+F for some A ∈ x , then remove A from x .
Repeat the last step until nothing can be removed.

Finally, x is a minimal key of R.

We might get different keys depending on the order in which we
remove attributes.

Finding a Minimal Key

Results

sid exercise points maxPoints
100 1 9 10
101 1 8 10
101 2 11 12

F =

{
sid, exercise → points

exercise → maxPoints

}
We determine a minimal key for the relation Results:

1. x = { sid, exercise, points, maxPoints }

2. We remove points since { sid, exercise } ⊆ x :
x = { sid, exercise, maxPoints }

3. We remove maxPoints since { exercise } ⊆ x :
x = { sid, exercise }

Nothing else can be removed. We have a minimal key:
{ sid, exercise }

Finding all Minimal Keys
Finding all Minimal Keys

Input: A1,A2, . . . ,An (all attributes of R) and F (set of FDs)
Output: Results (the set of all minimal keys of R)
Results = ∅;
Candidates = { {Ai | Ai is not part of any right-hand side in F } };
while Candidates 6= ∅ do

choose and remove a smallest κ ∈ Candidates;
if κ contains no key in Results then

if κ+F = {A1,A2, . . . ,An } then
Results = Results ∪ {κ};

else
for all Ai 6∈ κ+F do
κi = κ ∪ {Ai };
Candidates = Candidates ∪ { κi };

end for
end if

end if
end while
return Results;

How to Determine Keys: Examples

Find all minimal keys the relation R

R

A B C D E

with the functional dependencies

A→ D B → C B → D D → E

We get
1. Candidates = { {A,B } }

since A,B do not occur in any right-hand side
2. {A,B }+ = {A,B,C,D,E }

So {A,B } is a key.
3. Candidates = { }

No more candidate keys to check, we terminate.

How to Determine Keys: Examples

Find all minimal keys the relation R(A,B,C,D,E) with

A,D → B,D B,D → C A→ E

We get
1. Candidates = { {A } } since A not in any right-hand side
2. {A }+ = {A,E }, so we extend with B,C,D:

Candidates = { {A,B }, {A,C }, {A,D } }

3. {A,D }+ = {A,B,C,D,E }. So {A,D } is a key.
4. {A,B }+ = {A,B,E }, so we extend with C,D:

Candidates = { {A,B,C }, {A,B,D }, {A,C } }

5. {A,C }+ = {A,C,E }, so we extend with B,D:
Candidates = { {A,B,C }, {A,B,D }, {A,C,D } }

6. Remove {A,B,D } and {A,C,D } since they contain a key.
7. {A,B,C }+ = {A,B,C,E } is not a key!

Extension with D again contains a key.

Database Normalisation :: Consequence of Bad Design

Consequences of Bad DB Design

Usually a severe sign of bad DB design if a table contains an
FD (encodes a partial function) that is not implied by a key.

Here instructor→ phone is not implied by a key in:
Courses

courseNr title instructor phone
230 Databases I Arthur 9002
415 Functional Programming Arthur 9002
301 Graph Theory Marvin 8020

This leads to
redundant storage of certains facts
(here, phone numbers)

insert, update, deletion anomalies

Consequences of Bad DB Design

Redundant storage is bad for several reasons:

it wastes storage space

difficult to ensure integrity when updating the database
all redundant copies need to be updated
wastes time, inefficient

need for additional constraints to guarantee integrity
ensure that the redundant copies indeed agree
e.g. the constraint instructor→ phone

Problem
General FDs are not supported by relational databases.

The solution is to transform FDs into key constraints.
This is what database normalization tries to do.

Consequences of Bad DB Design

Update anomalies
When a single value needs to be changed (e.g., a phone
number), multiple tuples must be updated. This
complicates programs and updates takes longer.
Redundant copies potentially get out of sync and it is
impossible/hard to identify the correct information.

Insertion anomalies
The phone number of a new instructor cannot be inserted
into the DB until it is known what course she/he will teach.
Insertion anomalies arise when unrelated concepts are
stored together in a single table.

Deletion anomalies
When the last course of an instructor is deleted, his/her
phone number is lost.

Database Normalisation :: Boyce-Codd Normal Form

Boyce-Codd Normal Form

A relation R is in Boyce-Codd Normal Form (BCNF)
if all its functional dependencies are implied by its keys.
That is, for every FD A1, . . . ,An → B1, . . . ,Bm of R we have:

{A1, . . . ,An } contains a key of R, or
the FD is trivial (that is, {B1, . . . ,Bm } ⊆ {A1, . . . ,An })

The relation
Courses(courseNr, title, instructor, phone)

with the FDs
courseNr → title, instructor, phone

instructor → phone

is not in BCNF because of the FD instructor→ phone:
{ instructor } contains no key, and
the functional dependency is not trivial.

However, the relation Courses(courseNr, title, instructor)
without phone is in BCNF.

Boyce-Codd Normal Form: Examples

Each course meets once per week in a dedicated room:

Class(courseNr, title, weekday, time, room)

The relation thus satisfies the following FDs (plus implied ones):

courseNr → title, weekday, time, room
weekday, time, room → courseNr

The minimal keys of Class are
{ courseNr }

{ weekday, time, room }

Is the relation in BCNF?
both FDs are implied by keys
(their left-hand sides even coincide with the keys)

Thus Class is in BCNF.

Boyce-Codd Normal Form: Examples

Consider the relation

Product(productNr, name, price)

and the following FDs:

productNr → name
productNr → price

price, name → name
productNr, price → name

Is this relation in BCNF?
Note that { productNr } is a key.
The FD price, name→ name is trivial.
All other FDs are implied by the key { productNr }.

Thus the relation Product is in BCNF.

Boyce-Codd Normal Form: Advantages

Advantages of Boyce-Codd Normal Form

If a relation R is in BCNF, then. . .
Ensuring its key constraints automatically satisfies all FDs.
Hence, no additional constraints are needed for FDs!

The anomalies (udpate/insertion/deletion) do not occur.

Boyce-Codd Normal Form: Quiz

BCNF Quiz

1. Consider the relation
Results(sid, exercise, points, maxPoints)

with the following FDs

sid, exercise → points
exercise → maxPoints

Is this relation in BCNF?

2. Consider the relation
Invoice(invoiceNr, date, amount,

customerNr, customerName)

with the following FDs
invoiceNr → date, amount, customerNr

invoiceNr, date → customerName
customerNr → customerName
date, amount → date

Is this relation in in BCNF?

Database Normalisation :: Third Normal Form

Third Normal Form

A key attribute is an attribute that appears in a minimal key.
Minimality is important, otherwise all attributes are key attributes.

Assume that every FD has a single attribute on the right-hand side.
If not, expand FDs with multiple attributes on the right-hand side.

Third Normal Form (3NF)
A relation R is in Third Normal Form (3NF) if and only if every
FD A1, . . . ,An → B satisfies at least one of the conditions:

{A1, . . . ,An } contains a key of R, or
the FD is trivial (that is, B ∈ {A1, . . . ,An }), or
B is a key attribute of R.

The only difference with BCNF is the last condition.

Third Normal Form (3NF) is slightly weaker than BCNF:
If a relation is in BCNF, it is automatically in 3NF.

Third Normal Form vs. Boyce-Codd Normal Form

In short, we can say:

BCNF ⇐⇒ for every non-trivial FD:
the left-hand side contains a key

3NF ⇐⇒ for every non-trivial FD:
the left-hand side contains a key, or
the right-hand side is an attribute of a minimal key

Third Normal Form vs. Boyce-Codd Normal Form

3NF vs BCNF
Bookings

court startTime endTime rate
1 9:30 11:00 saver
2 9:30 12:00 premium-a
1 12:00 14:00 standard

The table contains bookings for one day at a tennis club:
there are courts 1 (hard court) and 2 (grass court)
the rates are

saver for member bookings of court 1
standard for non-member bookings of court 1
premium-a for member bookings of court 2
premium-b for non-member bookings of court 2

Quiz:
Find a representative set of functional dependencies.
Is the table in BCNF? Is the table in 3NF?

Database Normalisation :: Splitting Relations

Splitting Relations

If a table R is not in BCNF, we can split it into two tables.

The violating FD determines how to split:

Table Decomposition
If the FD A1, . . . ,An → B1, . . .Bm violates BCNF:

create a new relation S(A1, . . . ,An,B1, . . . ,Bm) and
remove B1, . . . ,Bm from the original relation R.

The table
Courses(courseNr, title, instructor, phone)

violates BCNF because of instructor→ phone.

We split into:
Courses(courseNr, title, instructor)

Instructors(instructor, phone)

Splitting Relations: Lossless Splits

It is important that this splitting transformation is lossless, i.e.,
that the original relation can be reconstructed by a join.

Reconstruction after split
Recall that we have split

OldCourses(courseNr, title, instructor, phone)

into tables
Courses(courseNr, title, instructor)

Instructors(instructor, phone)

We can reconstruct the original table as follows:
create view OldCourses(courseNr, title, instructor, phone) as

select courseNr, title, C.instructor, phone
from Courses C, Instructors I
where C.instructor = I.instructor

Splitting Relations: Lossless Splits

When is a split lossless?

Decomposition Theorem
The split of relations is guaranteed to be lossless if the set of
shared attributes of the new tables is a key of at least one.

The join connects tuples depending on the shared attributes. If these values
uniquely identify tuples in one relation we do not lose information.

“Lossy” decomposition
Original table Decomposition “Reconstruction”
(key A,B,C) R1 R2 R1 1 R2

A B C
a11 b11 c11
a11 b11 c12
a11 b12 c11

A B
a11 b11
a11 b12

A C
a11 c11
a11 c12

A B C
a11 b11 c11
a11 b11 c12
a11 b12 c11
a11 b12 c12

Splitting Relations: Lossless Splits

Lossless split condition satisfied
Recall that we have split

OldCourses(courseNr, title, instructor, phone)

into tables
Courses(courseNr, title, instructor)

Instructors(instructor, phone)

The lossless split condition is satisfied since
{courseNr, title, instructor} ∩ {instructor, phone}

= {instructor}

and instructor is a key of the table Instructors.

All splits initiated by the table decomposition method satisfy
the condition of the decomposition theorem.

It is always possible to transform a relation into BCNF by
lossless splitting.

Splitting Relations: Lossless Splits

Lossless split guarantees that the schema after splitting can
represent all DB states that were possible before.

we can translate states from the old into the new schema
old schema can be “simulated” via views

Lossless splits can lead to more general schemas!
the new schema allows states which do not correspond to
the state in the old schema

Recall that we have split
OldCourses(courseNr, title, instructor, phone)

into tables
Courses(courseNr, title, instructor)

Instructors(instructor, phone)

We may now store instructors and phone numbers without
any affiliation to courses.

Splitting Relations: Unnecessary Splits

Not every lossless split is reasonable!

Students

sid first last
101 George Orwell
102 Elvis Presley

Splitting Students into

StudentsFirst(sid, first)
StudentsLast(sid, last)

is lossless, but
the split is not necessary to enforce a normal form, and
only requires costly joins in subsequent queries.

Splitting Relations: Computable Columns

Although computable columns lead to violations of BCNF,
splitting the relation is not the right solution.

E.g. age which is derivable from dateOfBirth.

As a consequence we have a functional dependency:

dateOfBirth→ age

A split would yield a relation:

R(dateOfBirth, age)

which would try to materialise the computable function.

The correct solution is to eliminate age from the table and to
define a view containing all columns plus the computed age.

Database Normalisation ::
Preservation of Functional Dependencies

Preservation of Functional Dependencies

Besides losslessness, a desirable property of a decomposition
is the preservation of functional dependencies:

A FD can refer only to attributes of a single relation.
When splitting a relation into two, there might be FDs that
can no longer be expressed (they are not preserved).

FD gets lost during decomposition

Addresses(streetAddress, city, state, zipCode)

with functional dependencies
streetAddress, city, state → zip

zip → state

The second FD violates BCNF and would lead to the split:
Addresses1(streetAddress, city, zip)

Addresses2(zip, state)

But now the first FD can no longer be expressed.
�

Preservation of Functional Dependencies

Addresses(streetAddress, city, state, zipCode)

with functional dependencies
streetAddress, city, state → zip

zip → state

Is the table in 3NF? Yes
Most designers would not split the table since it is in 3NF.

Pro split: if there are many addresses with the same ZIP
code, there will be significant redundancy.

Contra split: queries will involve more joins.

Whether or not to split depends on the intended application:
A table of ZIP codes might be of interest on its own.
E.g. for the database of a mailing company.

Database Normalisation :: BCNF Synthesis

BCNF Synthesis Algorithm

BNCF Synthesis Algorithm
Input: a relation R and a set of FDs for R.

1. Compute a canonical set of FDs F .

2. Maximise the right-hand sides of the FDs:
Replace every FD X → Y ∈ F by X → X+ − X .

3. Split off violating FDs one by one:
Start with S = {R }.

For every Ri ∈ S and X → Y ∈ F : if
X is contained in Ri (X ⊆ Ri), and
X is not a key of Ri (Ri 6⊆ X+), and
Y overlaps with Ri (Y ∩ Ri 6= ∅),

then, let Z = Y ∩ Ri and
remove attributes Z from the relation Ri , and
add a relation with attributes X ∪ Z to S.

BCNF Synthesis Algorithm: Example

Consider R = (A,B,C,D,E) with the canonical set of FDs

A→ D B → C B → D D → E

Here {A,B } is the only minimal key. Is R in BCNF? No.
1. Maximise the right-hand sides of the FDs:

A→ D,E B → C,D,E D → E

2. Split off violating FD’s one by one:
S = {R0(A,B,C,D,E) }

A→ D,E violates BCNF of R0

S = {R0(A,B,C), R1(A,D,E) }

B → C,D,E violates BCNF of R0

S = {R0(A,B), R1(A,D,E), R2(B,C) }

D → E violates BCNF of R1

S = {R0(A,B), R1(A,D), R2(B,C), R3(D,E) } - done!

Note that we lost the dependency B → D!

Database Normalisation :: 3NF Synthesis

3NF Synthesis Algorithm

The 3NF synthesis algorithm produces a lossless
decomposition of a relation into 3NF that preserves the FDs.

3NF Synthesis Algorithm
Input: relation R and a set of FDs for R.

1. Compute a canonical set of FDs F .

2. Merge α→ β1 and α→ β2 with the same left-hand side
in F to the single functional dependency α→ β1 ∪ β2 .

3. For all α→ β ∈ F create a relation with attributes α ∪ β.

4. If none of the created relations contains a key of R, add a
relation with the attributes of a minimal key of R.

5. Finally, drop relations Ri(α) if there is Rj(β) with α (β.

3NF Synthesis Algorithm: Example

Use the 3NF synthesis algorithm to normalise the relation

R(A,B,C,D,E ,F)

with the following canonical functional dependencies:

A→ D B → C B → D D → E

1. We already have a canonical set of FDs F .
2. We merge B → C and B → D to B → C,D, yielding:

A→ D B → C,D D → E

3. We create a relation for every functional dependency:
R1(A,D) R2(B,C,D) R3(D,E)

4. Does one of these relations contains a key of R?
No, so we add a relation with a minimal key of R:

R1(A,D) R2(B,C,D) R3(D,E) R4(A,B,F)

5. Nothing to drop, no relation subsumes another.

Efficiency Considerations: BCNF vs 3NF

BCNF does not retain all FDs, therefore 3NF is popular.

Database systems are good at checking key constraints,
because they create an index on the key columns.

If we leave a table in 3NF (and not BCNF), we have non-key
constraints. Namely those FDs that are not implied by keys.

Sometimes we can enforce non-key constraints as key
constraints on materialised views.

Database Normalisation :: Multivalued Dependencies

Introduction

Recall the Decomposition Theorem
The split of relations is guaranteed to be lossless if the
intersection (the shared set attributes) of the attributes of the
new tables is a key of at least one of them.

The condition in the decomposition theorem is only
sufficient (it guarantees losslessness),
but not necessary (a decomposition might be lossless
even if the condition is not satisfied).

Multivalued dependencies (MVDs) are constraints that give a
necessary and sufficient condition for lossless decomposition

MVDs lead to the Fourth Normal Form (4NF).

Multivalued Dependencies

The following table shows for each employee:
knowledge of programming languages
knowledge of programming DBMSs

Knowledge

employee programmingLanguage dbms
John Smith C Oracle
John Smith C MySQL
John Smith C++ Oracle
John Smith C++ MySQL
Maria Brown Prolog PostgreSQL
Maria Brown Java PostgreSQL

There are no non-trivial functional dependencies.
The table is in BCNF.

Nevertheless, there is redundant information.

Multivalued Dependencies

The table contains redundant data & must be split.

KnowledgeLanguage

employee programmingLanguage
John Smith C
John Smith C++
Maria Brown Prolog
Maria Brown Java

KnowledgeDBMS

employee dbms
John Smith Oracle
John Smith MySQL
Maria Brown PostgreSQL

Note: table may only be decomposed if programmingLanguage
and dbms are independent; otherwise loss of information.

E.g. it may not be decomposed if the semantics of the table is that the
employee knows the interface between the language and the database.

Multivalued Dependencies

The multivalued dependency (MVD)

employee� programmingLanguage

means that, for each employee, the set of values in column
programmingLanguage is independent of all other columns.

Knowledge

employee programmingLanguage dbms
John Smith C Oracle
John Smith C MySQL
John Smith C++ Oracle
John Smith C++ MySQL
Maria Brown Prolog PostgreSQL
Maria Brown Java PostgreSQL

The table contains an embedded function from the employee
to sets of programming languages.

Multivalued Dependencies

Formally, A� B holds if: whenever two tuples agree on A, one
can exchange their B values and the resulting tuples are in the
same table.

Due to employee� programmingLanguage and the two table rows

employee programmingLanguage dbms
John Smith C Oracle
John Smith C++ MySQL

the table must also contain the following rows

employee programmingLanguage dbms
John Smith C++ Oracle
John Smith C MySQL

This expresses the independence of programmingLanguage for
a given employee from the rest of the table columns.

Multivalued Dependencies

Multivalued Dependency
A multivalued dependency (MVD)

A1, . . . ,An � B1, . . . ,Bm

is satisfied in a DB state I ⇐⇒ for all tuples t ,u ∈ I(R) with
t .Ai = u.Ai ,1 6 i 6 n

there are two tuples t ′,u ′ ∈ I(R) such that
1. t ′ agrees with t except that t ′.Bi = u.Bi ,1 6 i 6 m, and
2. u ′ agrees with u except that u ′.Bi = t .Bi ,1 6 i 6 m.

The condition means that the values of the Bi are swapped:

a1, . . . ,an, b1, . . . ,bm, c1, . . . , ck

a1, . . . ,an, b ′
1, . . . ,b

′
m, c ′

1, . . . , c
′
k

t

u

a1, . . . ,an, b ′
1, . . . ,b

′
m, c1, . . . , ck

a1, . . . ,an, b1, . . . ,bm, c ′
1, . . . , c

′
k

t ′

u ′

Multivalued Dependencies

Multivalued dependencies always come in pairs!

If employee� programmingLanguage holds,
then employee� dbms is automatically satisfied.

More general:

For a relation R(A1, . . . ,An,B1, . . . ,Bm,C1, . . . ,Ck),
the following multivalued dependencies are equivalent

A1, . . . ,An � B1, . . . ,Bm

A1, . . . ,An � C1, . . . ,Ck

Swapping the Bj values in two tuples is the same as swapping the values for
all other columns (the Ai values are identical, swapping them has no effect).

Multivalued Dependencies

If the FD A1, . . .An → B1, . . .Bm holds, the corresponding MVD

A1, . . . ,An � B1, . . . ,Bm

is trivially satisfied.

The FD means that if tuples t , u agree on the Ai then also on the Bj .
Swapping thus has no effect (yields t , u again).

Deduction rules to derive all implied FDs/MVDs
The three Armstrong Axioms for FDs.
If α� β then α� γ, where γ are all remaining columns.
If α1 � β1 and α2 ⊇ β2 then α1 ∪ α2 � β1 ∪ β2.
If α� β and β� γ then α� (γ− β).
If α→ β, then α� β.
If α� β and β ′ ⊆ β and there is γ with γ ∩ β = ∅ and
γ→ β ′, then α→ β ′.

Fourth Normal Form

Fourth Normal Form (4NF)
A relation is in Fourth Normal Form (4NF) if every MVD

A1, . . . ,An � B1, . . . ,Bm

is
either trivial, or
implied by a key.

This definition of 4NF is very similar to BCNF but with a focus
on implied MVDs (not FDs).

Since every FD is also an MVD, 4NF is stronger than BCNF.
That is, if a relation is in 4NF, it is automatically in BCNF.

However, it is not very common that 4NF is violated, but BCNF is not.

Fourth Normal Form

The relation

Knowledge(employee, programmingLanguage, dbms)

is an example of a relation that is in BCNF, but not in 4NF.

The relation has no non-trivial FDs.

Database Normalisation ::
Normal Forms and Entity-Relationship Models

Introduction

If a “good” ER schema is transformed into the relational model,
the result will satisfy all normal forms (4NF, BCNF, 3NF).

A normal form violation detected in the generated relational
schema indicates a flaw in the input ER design.

This needs to be corrected on the ER level.

FDs in the ER model
The ER equivalent of the very first example in this chapter:

Courses

courseNr
title

phone

instructor

The FD instructor→ phone leads to a
violation of BCNF in the resulting
table for entity Courses.
Also in the ER model, FDs between
attributes of an entity set should be
implied by a key constraint.

Examples

In the ER model, the solution is the “same” as in the relational
model: we have to split the entity set.

ER entity split
In this case, the instructor is an independent entity:

Courses

courseNr
title

Instructors

instructor

phone

given_by 1..10..∗

Examples

Functional dependencies between attributes of a relationship
always violate BCNF.

Violation of BCNF on the ER level

Customers Products

customerNr productNr

orders
0..∗ 0..∗

orderNr

date

The FD orderNr→ date violates BCNF.
The key of the table corresponding to the relationship set
“orders” consists of the attributes customerNr, productNr.

This shows that the concept “order” is an independent entity.

Examples

Violations of BCNF might also be due to the wrong placement
of an attribute.

Questionable attribute placement

Students Courses

studentId courseNr

takes
0..∗ 0..∗

email

The relationship is translated into
Takes(studentId, courseNr, email)

Then the FD studentId→ email violates BCNF.
Obviously, email should be an attribute of Students.

Examples

If an attribute of a ternary relationship depends only on two of
the entities, this violates BCNF.

Ternary relationship

Instructors Courses

Terms

taught

room

If every course is taught only once per term, then attribute room
depends only on term and course (but not instructor).

Then the FD term, course→ room violates BCNF.

Normalization: Summary

Relational normalization is about:

Avoiding redundancy.

Storing separate facts (functions) separately.

Transforming general integrity constraints into
constraints that are supported by the DBMS: keys.

Database Normalisation :: Denormalization

Denormalization

Denormalization is the process of adding redundant
columns to the database in order to improve performance.

Redundant data storage
For example, if an application extensively access the phone
number of instructors, performance-wise it may make sense to
add column phone to table Courses.

Courses

courseNr title instructor phone

This avoids the otherwise required joins (on attribute
instructor) between tables Courses and Instructors.

Denormalization

Since there is still the separate table Instructors, insertion
and deletion anomalies are avoided.

But there will be update anomalies (changing a single phone
number requires the update of many rows).

The performance gain is thus paid for with
a more complicated application logic
(e.g., the need for triggers)
risk that a faulty application turns the DB inconsistent

Denormalization may not only be used to avoid joins:
Complete separate, redundant tables may be created
(increasing the potential for parallel operations).
Columns may be added which aggregate information in
other columns/rows.

Database Normalisation :: Other Constraints

Other Constraints

Multiple choice test
The following relation stores the solutions to a typical multiple
choice test:

Answers

question answer text correct
1 a ... Y
1 b ... N
1 c ... N
2 a ... N
2 b ... Y
2 c ... N

Using keys to enforce other constraints
The following is not an FD, MVD, or JD:

“Each question can only have one correct answer.”
Can you suggest a transformation of table Answers such that the
above constraint is already implied by a key?

Other Constraints

Solution 1
We could have separate tables for correct and wrong answers:

CorrectAnswers(question, answer, text)
WrongAnswers(question, answer, text)

Observe that the key in CorrectAnswers ensures that there is
only one correct answer per question.
However, requires a new inter-relational constraint: the same
question with the same answer may not appear in both tables.

Solution 2
We could have separate tables for correct and wrong answers:

Questions((question, correctAnswer)→ Answers, text)
Answers(question→ Questions, answer, text)

Here the correct answer is indicated via a foreign key in
Questions referencing the Answers table.

