\begin{frame}
\frametitle{Examples}
\begin{goal}{}
If an attribute of a ternary relationship depends only on two of
the entities, this violates BCNF.
\end{goal}
\begin{exampleblock}{Ternary relationship}
\begin{tcenter}
\scalebox{.9}{
\begin{tikzpicture}[every edge/.style={link}]
\node[entity] (instructor) {Instructors};
\node[entity,xshift=70mm] (course) {Courses};
\node[entity,xshift=35mm,yshift=-20mm] (term) {Terms};
\node[relationship] at($(instructor)!.5!(course)$) (taught) {taught}
edge (instructor)
edge (course)
edge (term);
\node[attribute] [at=(taught),shift={(0cm,1.4cm)}] {room} edge (taught);
\end{tikzpicture}
}
\end{tcenter}
\pause
\medskip
If every course is taught only once per term, then attribute
room depends only on term and course (but not instructor).
\pause
\medskip
Then the FD $\sql{term},\sql{course} \to \sql{room}$ violates BCNF.
\end{exampleblock}
\end{frame}