\begin{frame}
\frametitle{Splitting Relations: Lossless Splits}
\begin{goal}{}
When is a split lossless?
\end{goal}
\pause
\begin{block}{Decomposition Theorem}
The split of relations is \emph{guaranteed to be lossless} if
the set of shared attributes of the new tables is a key of at least one.
\end{block}
\remark{%
The join connects tuples depending on the shared attributes.
If these values uniquely identify tuples in one relation we do not lose information.
}
\pause
\begin{exampleblock}{``Lossy'' decomposition}
\small
\centering
\renewcommand{\arraystretch}{0.8}
\begin{tabular}{@{}cccc@{}}
Original table & \multicolumn{2}{c@{}}{Decomposition} &
``Reconstruction'' \\
(key $A,B,C$) & $R_1$ & $R_2$ & $R_1 \join R_2$ \\[-1ex]
\colorbox{rellight}{%
$\begin{array}[t]{|@{}c@{}|@{}c@{}|@{}c@{}|}
\hline
\hd{$A$} & \hd{$B$} & \hd{$C$}
\\
\hline
a_{11} & b_{11} & c_{11} \\
a_{11} & b_{11} & c_{12} \\
a_{11} & b_{12} & c_{11} \\
\hline
\end{array}$%
}
&
\colorbox{rellight}{%
$\begin{array}[t]{|@{}c@{}|@{}c@{}|}
\hline
\hd{$A$} & \hd{$B$}
\\
\hline
a_{11} & b_{11} \\
a_{11} & b_{12} \\
\hline
\end{array}$%
}
&
\colorbox{rellight}{%
$\begin{array}[t]{|@{}c@{}|@{}c@{}|}
\hline
\hd{$A$} & \hd{$C$}
\\
\hline
a_{11} & c_{11} \\
a_{11} & c_{12} \\
\hline
\end{array}$%
}
&
\colorbox{rellight}{%
$\begin{array}[t]{|@{}c@{}|@{}c@{}|@{}c@{}|}
\hline
\hd{$A$} & \hd{$B$} & \hd{$C$}
\\
\hline
a_{11} & b_{11} & c_{11} \\
a_{11} & b_{11} & c_{12} \\
a_{11} & b_{12} & c_{11} \\
a_{11} & b_{12} & c_{12} \\
\hline
\end{array}$%
}
\end{tabular}
\end{exampleblock}
\end{frame}