\begin{frame}
\frametitle{Boyce-Codd Normal Form: Examples}
\begin{exampleblock}{}
Consider the relation
\begin{center}
\sql{Product(productNr, name, price)}
\end{center}
and the following FDs:
\begin{center}
$
\begin{array}{rcl}
\sql{productNr} & \to & \sql{name} \\
\sql{productNr} & \to & \sql{price}
\end{array}
\qquad
\begin{array}{rcl}
\sql{price}, \sql{name} & \to & \sql{name} \\
\sql{productNr}, \sql{price} & \to & \sql{name}
\end{array}
$
\end{center}
Is this relation in BCNF?
\begin{itemize}
\pause
\item Note that $\{\, \sql{productNr} \,\}$ is a key.
\pause
\item The FD $\sql{price}, \sql{name} \to \sql{name}$ is trivial.
\pause
\item All other FDs are implied by the key $\{\, \sql{productNr} \,\}$.
\pause
\end{itemize}
Thus the relation \sql{Product} \emph{is in BCNF}.
\end{exampleblock}
\end{frame}