\begin{frame}
\frametitle{Boyce-Codd Normal Form: Examples}
\begin{exampleblock}{}
Each course meets once per week in a dedicated room:
\begin{center}
$\sql{Class(courseNr, title, weekday, time, room)}$
\end{center}
\pause
The relation thus satisfies the following FDs (plus implied ones):\pause
\begin{center}
$
\begin{array}{rcl}
\sql{courseNr} & \to & \sql{title}, \sql{weekday}, \sql{time}, \sql{room}
\\
\sql{weekday}, \sql{time}, \sql{room} & \to & \sql{courseNr}\pause%
\end{array}
$
\end{center}
The minimal keys of \sql{Class} are
\begin{itemize}
\pause
\item $\{\;\sql{courseNr}\;\}$
\pause
\item $\{\;\sql{weekday}, \sql{time}, \sql{room} \;\}$
\end{itemize}
\pause
Is the relation in BCNF?
\pause
\begin{itemize}
\item both FDs are implied by keys \\
\remark{(their left-hand sides even coincide with the keys)}
\end{itemize}
\pause
Thus \sql{Class} \emph{is in BCNF.}
\end{exampleblock}
\end{frame}