\begin{frame}
\frametitle{Boyce-Codd Normal Form}
\vspace{-.5ex}
\begin{block}{}
A relation $R$ is in \emph{Boyce-Codd Normal Form (BCNF)} \\
if all its functional dependencies are implied by its keys.
\smallskip
That is, for every FD $A_1, \dots, A_n \to B_1, \dots, B_m$ of $R$ we have:
\begin{itemize}
\item
$\{\, A_1, \dots, A_n \,\}$ contains a key of $R$, or
\item
the FD is trivial (that is, $\{\,B_1,\dots,B_m\,\} \subseteq \{\,A_1, \dots, A_n\,\}$)
\end{itemize}
\end{block}
\pause
\begin{exampleblock}{}
\raggedright
The relation
\begin{tcenter}
\sql{Courses(\underline{courseNr}, title, instructor, phone)}
\end{tcenter}
with the FDs
\begin{tcenter}
$
\begin{array}{rcl}
\sql{courseNr} & \to & \sql{title}, \sql{instructor}, \sql{phone} \\
\sql{instructor} & \to & \sql{phone}
\end{array}
$
\end{tcenter}
\pause
is \emph{not in BCNF} because of the FD $\sql{instructor} \to \sql{phone}$:
\begin{itemize}
\item $\{\, \sql{instructor} \,\}$ contains no key, and
\item the functional dependency is not trivial.
\end{itemize}
\pause
However, the relation \sql{Courses(\underline{courseNr}, title, instructor)}
without \sql{phone} is in BCNF.
\end{exampleblock}
\end{frame}