\begin{frame}
\frametitle{Determinants}
\begin{block}{Determinants (Non-trivial, minimal FDs)}
\raggedright
$\{\, A_1, \dots, A_n \,\}$ is a \emph{determinant} for $\{\, B_1, \dots, B_m \,\}$ if
\begin{itemize}
\item the FD $A_1, \dots, A_n \to B_1, \dots B_m$ holds, and
\item the \emph{left-hand side is minimal}, that is, if any $A_i$ is removed
then $A_1, \dots, A_{i-1}, A_{i+1}, A_n \to B_1, \dots B_m$
does \textit{not} hold, and
\item it is \emph{not trivial}, that is, $\{B_1, \dots, B_m\} \not\subseteq \{A_1, \dots, A_n\}$.
\end{itemize}
\end{block}
(In a canonical set of FDs, all FDs are determinants.)
\pause
\begin{exampleblock}{}
\begin{center}
$
\mathcal{F} = \left\{
\begin{array}{rcl}
\sql{sid}, \sql{exercise} & \to & \sql{points} \\
\sql{exercise} & \to & \sql{maxPoints}
\end{array} \right\}
$\vspace{-.5ex}
\end{center}
Are the following determinants?
\begin{itemize}
\pause
\item $\sql{points},\; \sql{maxPoints}$ \;for\; $\sql{points},\; \sql{maxPoints}$ \;? \pause No
\pause
\item $\sql{exercise}$ \;for\; $\sql{points},\; \sql{maxPoints}$ \;? \pause No
\pause
\item $\sql{sid},\; \sql{exercise}$ \;for\; $\sql{points},\; \sql{maxPoints}$ \;? \pause Yes
\pause
\item $\sql{exercise},\; \sql{points}$ \;for\; $\sql{points},\; \sql{maxPoints}$ \;? \pause Yes
\end{itemize}
\end{exampleblock}
\end{frame}