\begin{frame}
\frametitle{Functional Dependencies}
A functional dependency with $m$ attributes on the \emph{right}
\begin{talign}
A_1, \dots A_n \to B_1, \dots B_m
\end{talign}
is \emph{equivalent} to the $m$ FDs:
$$
\begin{array}{ccc}
A_1, \dots, A_n & \to & B_1 \\[-.5ex]
\vdots & & \vdots \\[-.5ex]
A_1, \dots, A_n & \to & B_m
\end{array}\vspace{-1.3ex}%
$$
\pause
\begin{exampleblock}{}
\vspace{-1.5ex}
\begin{talign}
A,B \to C,D
\end{talign}
is equivalent to the combination of
\begin{talign}
A,B &\to C &
A,B &\to D
\end{talign}
but \emph{not} equivalent to
\begin{talign}
A &\to C,D &
B &\to C,D
\end{talign}
\end{exampleblock}
\pause\vspace{-.75ex}
\begin{goal}{}
So, in the sequel it suffices to consider functional dependencies
with a single column name on the right-hand side.
\end{goal}
\end{frame}
\theme{\\Keys vs. Functional Dependencies}