
Databases – Conceptual to Relational Model

Jörg Endrullis

VU University Amsterdam

Translation :: Basic Translation

From Conceptual to Relational Model

Basic idea
Entity sets and relationship sets are represented as tables.

Roughly:

one table for each entity set
(name of the table is name of the entity set)

one table for each relationship set
(name of the table is name of the relationship set)

columns roughly correspond to the attributes

From Conceptual to Relational Model

Basic idea
Entity sets and relationship sets are represented as tables.

Roughly:

one table for each entity set
(name of the table is name of the entity set)

one table for each relationship set
(name of the table is name of the relationship set)

columns roughly correspond to the attributes

Representing Entity Sets

A strong entity set becomes

a table with
columns for the attributes

customer

id
name

street

city

Customer
id name street city
1 Smith North Pittsburgh
2 Jones Alma Philadelphia
3 Brown Main New York
4 Ford Main Washington

Representing Entity Sets

A strong entity set becomes a table with
columns for the attributes

customer

id
name

street

city

Customer
id name street city
1 Smith North Pittsburgh
2 Jones Alma Philadelphia
3 Brown Main New York
4 Ford Main Washington

Representing Entity Sets

A strong entity set becomes a table with
columns for the attributes

customer

id
name

street

city

Customer
id name street city
1 Smith North Pittsburgh
2 Jones Alma Philadelphia
3 Brown Main New York
4 Ford Main Washington

Representing Weak Entity Sets

A weak entity set becomes

a table that includes
columns for the attributes, and
columns for the primary keys of the identifying entity

loan

loan-number

loan-amount

payment

payment-number

date amount

loan
payment

1..1 0..∗

Payment

loan-number → Loan payment-number date amount
L-11 1 19-05-2013 125
L-14 2 01-02-2014 1000
L-17 1 05-07-2012 50
L-20 5 17-11-2013 750

Representing Weak Entity Sets

A weak entity set becomes a table that includes
columns for the attributes, and
columns for the primary keys of the identifying entity

loan

loan-number

loan-amount

payment

payment-number

date amount

loan
payment

1..1 0..∗

Payment

loan-number → Loan payment-number date amount
L-11 1 19-05-2013 125
L-14 2 01-02-2014 1000
L-17 1 05-07-2012 50
L-20 5 17-11-2013 750

Representing Weak Entity Sets

A weak entity set becomes a table that includes
columns for the attributes, and
columns for the primary keys of the identifying entity

loan

loan-number

loan-amount

payment

payment-number

date amount

loan
payment

1..1 0..∗

Payment

loan-number → Loan payment-number date amount
L-11 1 19-05-2013 125
L-14 2 01-02-2014 1000
L-17 1 05-07-2012 50
L-20 5 17-11-2013 750

Representing Relationship Sets

A many-to-many relationship set becomes

a table with
columns for the attributes of the relationship set, and
for the primary keys of the participating entity sets.

customer

id
name

street

city

loan

loan-number

amount

borrower
1..N 0..M

Borrower
id → Customer loan-number → Loan

12-0202 L-11
01-1823 L-14
22-7361 L-17
05-1912 L-20

Representing Relationship Sets

A many-to-many relationship set becomes a table with
columns for the attributes of the relationship set, and
for the primary keys of the participating entity sets.

customer

id
name

street

city

loan

loan-number

amount

borrower
1..N 0..M

Borrower
id → Customer loan-number → Loan

12-0202 L-11
01-1823 L-14
22-7361 L-17
05-1912 L-20

Representing Relationship Sets

A many-to-many relationship set becomes a table with
columns for the attributes of the relationship set, and
for the primary keys of the participating entity sets.

customer

id
name

street

city

loan

loan-number

amount

borrower
1..N 0..M

Borrower
id → Customer loan-number → Loan

12-0202 L-11
01-1823 L-14
22-7361 L-17
05-1912 L-20

Translation :: Eliminating Tables

Eliminating Tables

Many-to-(zero or)one relations can be represented by:

adding an extra extra attribute/column to the many-side
with the primary key of the one-side

customer

id
name

street

city

account

account-number

balance

depositor1..1 0..∗

For example, instead of creating a table for the relationship set
depositor, add a the attribute id of customer to account.

Account
id → Customer account-number balance

12-0202 83828 125
01-1823 29281 1000

Eliminating Tables

Many-to-(zero or)one relations can be represented by:
adding an extra extra attribute/column to the many-side
with the primary key of the one-side

customer

id
name

street

city

account

account-number

balance

depositor1..1 0..∗

For example, instead of creating a table for the relationship set
depositor, add a the attribute id of customer to account.

Account
id → Customer account-number balance

12-0202 83828 125
01-1823 29281 1000

Eliminating Tables

Many-to-(zero or)one relations can be represented by:
adding an extra extra attribute/column to the many-side
with the primary key of the one-side

customer

id
name

street

city

account

account-number

balance

depositor1..1 0..∗

For example, instead of creating a table for the relationship set
depositor, add a the attribute id of customer to account.

Account
id → Customer account-number balance

12-0202 83828 125
01-1823 29281 1000

Eliminating Tables

If participation is partial (0..1) then replacing the table by an
attribute will result in null values for the entities that do not
participate in the relationship set.

If participation is total (1..1), declare foreign key not null.

For one-to-one (0..1 or 1..1) relationship sets either side can be
extended with the key of the other.

Tables for relationship sets linking weak entity sets to the
identifying entity set can always be eliminated.
No extra table is needed! The table of the weak entity set
already contains the key of the identifying entity set.

For instance the payment table already contains the full information that
would appear in the loan-payment table (loan-number and payment-number).

Eliminating Tables

If participation is partial (0..1) then replacing the table by an
attribute will result in null values for the entities that do not
participate in the relationship set.

If participation is total (1..1), declare foreign key not null.

For one-to-one (0..1 or 1..1) relationship sets either side can be
extended with the key of the other.

Tables for relationship sets linking weak entity sets to the
identifying entity set can always be eliminated.
No extra table is needed! The table of the weak entity set
already contains the key of the identifying entity set.

For instance the payment table already contains the full information that
would appear in the loan-payment table (loan-number and payment-number).

Eliminating Tables

If participation is partial (0..1) then replacing the table by an
attribute will result in null values for the entities that do not
participate in the relationship set.

If participation is total (1..1), declare foreign key not null.

For one-to-one (0..1 or 1..1) relationship sets either side can be
extended with the key of the other.

Tables for relationship sets linking weak entity sets to the
identifying entity set can always be eliminated.
No extra table is needed! The table of the weak entity set
already contains the key of the identifying entity set.

For instance the payment table already contains the full information that
would appear in the loan-payment table (loan-number and payment-number).

Eliminating Tables

branch

name city

account

number

balance
account-of

1..1 0..∗

Basic translation

Branch

name city
branch1 Amsterdam
branch2 Utrecht

Account-of
number→ Account

name→ Branch
83828 branch1
29281 branch2

Account

number balance
83828 125
29281 1000

Optimised translation
Branch

name city
branch1 Amsterdam
branch2 Utrecht

Account

name → Branch number balance
branch1 83828 125
branch2 29281 1000

Eliminating Tables

branch

name city

account

number

balance
account-of

1..1 0..∗

Basic translation
Branch

name city
branch1 Amsterdam
branch2 Utrecht

Account-of
number→ Account

name→ Branch
83828 branch1
29281 branch2

Account

number balance
83828 125
29281 1000

Optimised translation
Branch

name city
branch1 Amsterdam
branch2 Utrecht

Account

name → Branch number balance
branch1 83828 125
branch2 29281 1000

Eliminating Tables

branch

name city

account

number

balance
account-of

1..1 0..∗

Basic translation
Branch

name city
branch1 Amsterdam
branch2 Utrecht

Account-of
number→ Account

name→ Branch
83828 branch1
29281 branch2

Account

number balance
83828 125
29281 1000

Optimised translation

Branch

name city
branch1 Amsterdam
branch2 Utrecht

Account

name → Branch number balance
branch1 83828 125
branch2 29281 1000

Eliminating Tables

branch

name city

account

number

balance
account-of

1..1 0..∗

Basic translation
Branch

name city
branch1 Amsterdam
branch2 Utrecht

Account-of
number→ Account

name→ Branch
83828 branch1
29281 branch2

Account

number balance
83828 125
29281 1000

Optimised translation
Branch

name city
branch1 Amsterdam
branch2 Utrecht

Account

name → Branch number balance
branch1 83828 125
branch2 29281 1000

Translation :: Cardinalities and Constraints

Cardinalities and Constraints

When translating entity sets and relationship sets to tables:
every table should have a primary key (if possible)
declared foreign key constraints for each relation

Foreign keys should be declared
not null, or not,
unique, or not,

to model the cardinality limits as good as possible.

All columns in tables from relationship sets are not nullable.
Each row is a relationship among all participating entity sets.

Attributes should be declared not null and/or unique if
appropriate.

Cardinalities and Constraints

When translating entity sets and relationship sets to tables:
every table should have a primary key (if possible)
declared foreign key constraints for each relation

Foreign keys should be declared
not null, or not,
unique, or not,

to model the cardinality limits as good as possible.

All columns in tables from relationship sets are not nullable.
Each row is a relationship among all participating entity sets.

Attributes should be declared not null and/or unique if
appropriate.

Cardinalities and Constraints

When translating entity sets and relationship sets to tables:
every table should have a primary key (if possible)
declared foreign key constraints for each relation

Foreign keys should be declared
not null, or not,
unique, or not,

to model the cardinality limits as good as possible.

All columns in tables from relationship sets are not nullable.
Each row is a relationship among all participating entity sets.

Attributes should be declared not null and/or unique if
appropriate.

Cardinalities and Constraints

When translating entity sets and relationship sets to tables:
every table should have a primary key (if possible)
declared foreign key constraints for each relation

Foreign keys should be declared
not null, or not,
unique, or not,

to model the cardinality limits as good as possible.

All columns in tables from relationship sets are not nullable.
Each row is a relationship among all participating entity sets.

Attributes should be declared not null and/or unique if
appropriate.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B:

yes
A separate relationship set table.

A 0..1 to 0..∗ B:

yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B:

yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B:

yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes

A separate relationship set table.

A 0..1 to 0..∗ B:

yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B:

yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B:

yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B:

yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B:

yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B:

yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes

Add key of A as foreign key to B.

A 1..1 to 0..∗ B:

yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B:

yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B:

yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B:

yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes

Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B:

yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B

with constraint not null.

A 0..1 to 0..1 B:

yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B:

yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes

Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A)

with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B:

yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B: yes

Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B: yes
Add key of B as foreign key to A

with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B: yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B:

yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B: yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B: yes

Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B: yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B: yes
Join tables of A and B.

A M..N to 1..∗ B:

no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B: yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B: yes
Join tables of A and B.

A M..N to 1..∗ B: no

Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Cardinalities and Constraints

Which min/max cardinalities can be enforced and how?

A 0..∗ to 0..∗ B: yes
A separate relationship set table.

A 0..1 to 0..∗ B: yes
Add key of A as foreign key to B.

A 1..1 to 0..∗ B: yes
Add key of A as foreign key to B with constraint not null.

A 0..1 to 0..1 B: yes
Add key of A (or B) as foreign key to B (or A) with constraint unique.

A 0..1 to 1..1 B: yes
Add key of B as foreign key to A with constraints unique & not null.

A 1..1 to 1..1 B: yes
Join tables of A and B.

A M..N to 1..∗ B: no
Workaround: approximate the cardinality limit 1..∗ with 0..∗.

Translation :: Composite & Multi-Valued Attributes

Composite Attributes

Composite attributes are

flattened out by creating a separate
column for each component attribute.

customer

id

name

first-name

middle-initial

last-name

Customer
id first-name middle-initial last-name
1 James null Smith
2 Joe J Jones
3 Jack F Brown
4 Harrison null Ford

Composite Attributes

Composite attributes are flattened out by creating a separate
column for each component attribute.

customer

id

name

first-name

middle-initial

last-name

Customer
id first-name middle-initial last-name
1 James null Smith
2 Joe J Jones
3 Jack F Brown
4 Harrison null Ford

Composite Attributes

Composite attributes are flattened out by creating a separate
column for each component attribute.

customer

id

name

first-name

middle-initial

last-name

Customer
id first-name middle-initial last-name
1 James null Smith
2 Joe J Jones
3 Jack F Brown
4 Harrison null Ford

Multi-Valued Attributes

Multi-valued attribute A of an entity set E is represented by

a
separate table with:

columns for the primary key of E , and
a column for the attribute value

Each single value of the multi-valued attributes gets its own row.

customer

id name

phone-number

Customer
id name
1 Smith
2 Jones
3 Brown
4 Ford

Phone-number
id → Customer number

1 06-19348472
1 0346-928475
3 06-13783933
3 0238-187333
3 0192-937189

Multi-Valued Attributes

Multi-valued attribute A of an entity set E is represented by a
separate table with:

columns for the primary key of E , and
a column for the attribute value

Each single value of the multi-valued attributes gets its own row.

customer

id name

phone-number

Customer
id name
1 Smith
2 Jones
3 Brown
4 Ford

Phone-number
id → Customer number

1 06-19348472
1 0346-928475
3 06-13783933
3 0238-187333
3 0192-937189

Multi-Valued Attributes

Multi-valued attribute A of an entity set E is represented by a
separate table with:

columns for the primary key of E , and
a column for the attribute value

Each single value of the multi-valued attributes gets its own row.

customer

id name

phone-number

Customer
id name
1 Smith
2 Jones
3 Brown
4 Ford

Phone-number
id → Customer number

1 06-19348472
1 0346-928475
3 06-13783933
3 0238-187333
3 0192-937189

Translation :: ISA

ISA to Relational Model

person nameid

employee

salary

customer

credit-ratingISA

Method 1: hierarchy of tables
a table for the higher-level entity set
a table for each lover-level entity set; include primary key of
higher-level entity set and local attributes

Person

id name
1 James
2 Jones

Employee

id → Person salary
1 4000

Customer

id → Person credit-rating
2 42

Minor drawback: requires accessing multiple tables.

ISA to Relational Model

person nameid

employee

salary

customer

credit-ratingISA

Method 1: hierarchy of tables
a table for the higher-level entity set
a table for each lover-level entity set; include primary key of
higher-level entity set and local attributes

Person

id name
1 James
2 Jones

Employee

id → Person salary
1 4000

Customer

id → Person credit-rating
2 42

Minor drawback: requires accessing multiple tables.

ISA to Relational Model

person nameid

employee

salary

customer

credit-ratingISA

Method 2: many tables
Form a table for each entity set with all local and inherited
attributes.

Employee

id name salary
1 James 4000

Customer

id name credit-rating
2 Jones 42

Typically, we also need a table for person, but. . .

ISA to Relational Model

Method 2: many tables
Form a table for each entity set with all local and inherited
attributes.

If specialisation is total then we need no table for the
generalised entity (person):

Table for the generalised entity set can be defined as a view
containing the union of the specialisation tables

Drawback:
explicit table for the generalised entity might be needed for
foreign key constraints.
attributes are stored redundantly if an entity belongs to
several specialised entity sets (overlapping ISA)

e.g. name and address are stored multiple times for
someone who is customer and employee

ISA to Relational Model

Method 2: many tables
Form a table for each entity set with all local and inherited
attributes.

If specialisation is total then we need no table for the
generalised entity (person):

Table for the generalised entity set can be defined as a view
containing the union of the specialisation tables

Drawback:
explicit table for the generalised entity might be needed for
foreign key constraints.
attributes are stored redundantly if an entity belongs to
several specialised entity sets (overlapping ISA)

e.g. name and address are stored multiple times for
someone who is customer and employee

ISA to Relational Model

Method 2: many tables
Form a table for each entity set with all local and inherited
attributes.

If specialisation is total then we need no table for the
generalised entity (person):

Table for the generalised entity set can be defined as a view
containing the union of the specialisation tables

Drawback:
explicit table for the generalised entity might be needed for
foreign key constraints.
attributes are stored redundantly if an entity belongs to
several specialised entity sets (overlapping ISA)

e.g. name and address are stored multiple times for
someone who is customer and employee

ISA to Relational Model

person nameid

employee

salary

customer

credit-ratingISA

Method 3: one table with null values
From a single table with all local and specialised attributes.

Person
id name salary credit-rating
1 James 4000 null
2 Jones null 42

Advantage: no joins
Drawback: null values for non-applicable attributes
For instance, salary will be null for customers.

ISA to Relational Model

person nameid

employee

salary

customer

credit-ratingISA

Method 3: one table with null values
From a single table with all local and specialised attributes.

Person
id name salary credit-rating
1 James 4000 null
2 Jones null 42

Advantage: no joins
Drawback: null values for non-applicable attributes
For instance, salary will be null for customers.

Translation :: Primary Keys

Primary Keys

Customer
first-name last-name phone street city

Tom James 06-73917384 Main London
Joe Jones 06-18384405 Slater Paris

What would be a good primary key?

Is { first-name, last-name, phone } a good key?
the phone number can change
is it really unique?

It is often good to introduce an artificial internal key:
e.g. customer-id
advantage: unique, does not change
minor disadvantage: no descriptive meaning

Primary Keys

Customer
first-name last-name phone street city

Tom James 06-73917384 Main London
Joe Jones 06-18384405 Slater Paris

What would be a good primary key?

Is { first-name, last-name, phone } a good key?

the phone number can change
is it really unique?

It is often good to introduce an artificial internal key:
e.g. customer-id
advantage: unique, does not change
minor disadvantage: no descriptive meaning

Primary Keys

Customer
first-name last-name phone street city

Tom James 06-73917384 Main London
Joe Jones 06-18384405 Slater Paris

What would be a good primary key?

Is { first-name, last-name, phone } a good key?
the phone number can change
is it really unique?

It is often good to introduce an artificial internal key:
e.g. customer-id
advantage: unique, does not change
minor disadvantage: no descriptive meaning

Primary Keys

Customer
first-name last-name phone street city

Tom James 06-73917384 Main London
Joe Jones 06-18384405 Slater Paris

What would be a good primary key?

Is { first-name, last-name, phone } a good key?
the phone number can change
is it really unique?

It is often good to introduce an artificial internal key:
e.g. customer-id
advantage: unique, does not change
minor disadvantage: no descriptive meaning

Translation :: Recursive Relations

Recursive Relations

Example: an employee is supervised by a manager.

employee
id

name job title

salary
manager

id

name job title

salary

supervises
1..∗ 0..1

This diagram is wrong since a manager is an employee as well.

Recursive Relations

Example: an employee is supervised by a manager.

employee
id

name job title

salary
manager

id

name job title

salary

supervises
1..∗ 0..1

This diagram is wrong since a manager is an employee as well.

Recursive Relations

The correct way is to use a recursive relation:

employee

id

name

job title
salary

supervises
1..∗

0..1

manager

A recursive relation translates to a foreign key that refers to
the same table.

Employee
id name jobTitle salary supervisedBy → id
1 James 2
2 Harrison null

A recursive many-to-many relation requires a separate table
with two foreign keys to the parent table (the usual translation).

Recursive Relations

The correct way is to use a recursive relation:

employee

id

name

job title
salary

supervises
1..∗

0..1

manager

A recursive relation translates to a foreign key that refers to
the same table.

Employee
id name jobTitle salary supervisedBy → id
1 James 2
2 Harrison null

A recursive many-to-many relation requires a separate table
with two foreign keys to the parent table (the usual translation).

Recursive Relations

The correct way is to use a recursive relation:

employee

id

name

job title
salary

supervises
1..∗

0..1

manager

A recursive relation translates to a foreign key that refers to
the same table.

Employee
id name jobTitle salary supervisedBy → id
1 James 2
2 Harrison null

A recursive many-to-many relation requires a separate table
with two foreign keys to the parent table (the usual translation).

Recursive Relations

The following diagram is also correct:

employee
id

name job title

salary

manager

ISA
supervises

1..∗

0..1

Can be translated as:

Employee

id name jobTitle salary supervisedBy → Manager

Manager

id → Employee

If the manager has no additional attributes, then it is better to
eliminate the table (translation as on the last slide).

