36/120
\begin{frame}
  \frametitle{Cardinality Limits: One-to-Many}
  
  \begin{center}\vspace{-1ex}
  \begin{tikzpicture}[every edge/.style={link},node distance=18mm,>=triangle 45]
    \begin{scope}
      \node[relationship] (R) {R};
      \node (l) [left of=R,entity,minimum size=4mm] {A}; \draw (R) -- node[above,pos=.6] {$0\sldots 1$} (l); 
      \node (r) [right of=R,entity,minimum size=4mm] {B}; \draw (R) -- node[above,pos=.6] {$0\sldots *$} (r);
      
      \begin{scope}[nodes={draw,rectangle,fill=green!20,minimum size=4mm,scale=.8}]
      \foreach \i in {1,2,3,4,5,6} {
        \node at (-12mm,-5mm*\i - 3mm) (a\i) {a\i};
        \node at (12mm,-5mm*\i - 3mm) (b\i) {b\i};
      }
      \end{scope}
      
      \begin{scope}[thick]
        \draw (a2) to[out=0,in=180] (b1);
        \draw (a3) to[out=0,in=180] (b4);
        \draw (a3) to[out=0,in=180] (b5);
        \draw (a3) to[out=0,in=180] (b6);
      \end{scope}
    \end{scope}
    
    \begin{scope}[xshift=5cm]
      \node[relationship] (R) {R};
      \node (l) [left of=R,entity,minimum size=4mm] {A}; \draw (R) -- node[above,pos=.7] {$1\sldots 1$} (l); 
      \node (r) [right of=R,entity,minimum size=4mm] {B}; \draw (R) -- node[above,pos=.6] {$0\sldots *$} (r);
      
      \begin{scope}[nodes={draw,rectangle,fill=green!20,minimum size=4mm,scale=.8}]
      \foreach \i in {1,2,3,4,5,6} {
        \node at (-12mm,-5mm*\i - 3mm) (a\i) {a\i};
        \node at (12mm,-5mm*\i - 3mm) (b\i) {b\i};
      }
      \end{scope}
      
      \begin{scope}[thick]
        \draw (a1) to[out=0,in=180] (b2);
        \draw (a1) to[out=0,in=180] (b3);
        \draw (a2) to[out=0,in=180] (b1);
        \draw (a3) to[out=0,in=180] (b4);
        \draw (a3) to[out=0,in=180] (b5);
        \draw (a3) to[out=0,in=180] (b6);
      \end{scope}
    \end{scope}
  \end{tikzpicture}\vspace{-.5ex}
  \end{center}
  \pause
  
  \begin{goal}{}
    Both are called \emph{one-to-many} relationship set.
    \smallskip
    
    In both diagrams:
    \begin{itemize}
      \item every $a$ can have an arbitrary number of links to $b$ in $B$
    \end{itemize} 

    For the diagram on the left we have:
    \begin{itemize}
      \item every $b$ in $B$ is connected to at most one $a$ in $A$
    \end{itemize}
    
    For the diagram on the right we have:
    \begin{itemize}
      \item every $b$ in $B$ is connected to precisely one $a$ in $A$
    \end{itemize}
  \end{goal}
  \vspace{10cm}
\end{frame}