\begin{frame}[t]
\frametitle{Cardinality Limits: Many-to-Zero or One}
\begin{center}\vspace{-1ex}
\begin{tikzpicture}[every edge/.style={link},node distance=22mm,>=triangle 45]
\begin{scope}
\node[relationship] (R) {R};
\node (l) [left of=R,entity,minimum size=4mm] {A}; \draw (R) -- node[above,pos=.6] {$0\sldots *$} (l);
\node (r) [right of=R,entity,minimum size=4mm] {B}; \draw (R) -- node[above,pos=.6] {$0\sldots 1$} (r);
\begin{scope}[nodes={draw,rectangle,fill=green!20,minimum size=4mm,scale=.8}]
\foreach \i in {1,2,3,4,5,6} {
\node at (-12mm,-5mm*\i - 3mm) (a\i) {a\i};
\node at (12mm,-5mm*\i - 3mm) (b\i) {b\i};
}
\end{scope}
\begin{scope}[thick]
\draw (a1) to[out=0,in=180] (b2);
\draw (a4) to[out=0,in=180] (b3);
\draw (a5) to[out=0,in=180] (b3);
\draw (a6) to[out=0,in=180] (b3);
\end{scope}
\end{scope}
\end{tikzpicture}\vspace{-.5ex}
\end{center}
\bigskip
\begin{goal}{}
This describes a \emph{many-to-zero or one} relationship set:
\begin{itemize}
\item every $b$ in $B$ is related to an arbitrary number of $a$'s in $A$
\item every $a$ in $A$ is connected to at most one $b$ in $B$
\end{itemize}
\end{goal}
Confusingly, this is sometimes also called many-to-one.
\end{frame}