
Databases – The Relational Model

Jörg Endrullis

VU University Amsterdam

Relational Model :: Example Database

Example Database (Students)

Students
sid first last address
101 George Orwell London
102 Elvis Presley Memphis
103 Lisa Simpson Springfield
104 Bart Simpson Springfield
105 George Washington null

Meaning of the columns:
sid: unique number that identifies the student

first: first name
last: last name

address: city of residence (may be null)

Example Database (Exercises)

Exercises
category number topic maxPoints

exam 1 SQL 14
homework 1 Logic 10
homework 2 SQL 10

Meaning of the columns:
category: homework, midterm or exam
number: exercise number within category
topic: topic of exercise

maxPoints: maximum number of points

Example Database (Results)

Students(sid, first, last, address)

Exercises(category, number, topic, maxPoints)

Results

sid category number points
101 exam 1 12
101 homework 1 10
101 homework 2 8
102 exam 1 10
102 homework 1 9
102 homework 2 9
103 exam 1 7
103 homework 1 5

Meaning of the columns:
sid: identifies the student (references Students)

category, number: identifies exercise (references Exercises)
points: graded points

Relational Model :: Database Schemas

Data Types and Domains

Table entries are values that conform to some data type.

Examples of SQL data types
strings, e.g.

varchar(n) - strings of up to n characters (n ≤ 65535)
(long)text - strings up to 4GB

numbers, e.g.
bit, int, float, . . .

numeric(p,s) - decimal number p − s digits . s digits

binary data, e.g. blob
date and time, e.g. date, time, datetime, timestamp . . .

Available data types depend on the database management
system, and the supported version of the SQL standard.

Data Types and Domains

The domain dom(D) of a type D is the set of possible values.

dom(int) = {-2147483648, . . . , 2147483647}

dom(numeric(2,0)) = {-99, . . . , 99}

SQL allows to define application-specific domains as
subsets of standard data types:

create domain ExampleDomain as numeric(2,0)

We may even add constraints:

create domain ExampleDomain as numeric(2,0) check(value > 0)

Domains are useful to document that two columns represent
the same kind of objects and that comparisons are meaningful.

Relation Schema

Relation schema
A relation schema s (of a single relation) defines

a (finite) sequence A1, . . . ,An of distinct attribute names,

for each attribute Ai a data type (or domain) Di .
A relation schema can be written as

s = (A1 : D1, . . . ,An : Dn)

Exercises(category, number, topic, maxPoints)

Creating a relation schema in SQL
create table Exercises (

category varchar(10),
number numeric(2,0),
topic varchar(40),
maxPoints numeric(2,0)

)

Relation Schema: Notation

How to communicate schemas from human to human?
SQL create table statements are far from ideal.

Relation schema in SQL
create table Exercises (
category varchar(10),
number numeric(2,0),
topic varchar(40),
maxPoints numeric(2,0)

)

If the column data types are not important, we can write

Exercises(category, number, topic, maxPoints)

Also widely in use: sketch of the table header

Exercises
category number topic maxPoints

Relational Database Schemas

Relational database schema
A relational database schmema S defines

a finite set of relation names {R1, . . . ,Rm },
a relation schema schema(Ri) for every relation Ri ,
a set of integrity constraints C (defined later).

In summary, S = ({R1, . . . ,Rm }, schema, C).

Example: relational database schema
relation names { Students, Exercises, Results }

relation schema for every relation name
Students(sid, first, last, address)

Exercises(category, number, topic, maxPoints)

Results(sid, category, number, points)

Examples of integrity constraints: keys and foreign keys.

Relational Model :: Database States

Database States: Tuples

Tuples are used to formalise table rows.

A tuple t with respect to the relation schema

s = (A1 : D1, . . . ,An : Dn)

is a sequence t = (d1, . . . ,dn) of values such that di ∈ dom(Di).

In other words: t ∈ dom(D1)× · · · × dom(Dn).

For instance, ('exam', 1, 'SQL', 14) is a tuple in the table
Exercises

category number topic maxPoints
exam 1 SQL 14

homework 1 Logic 10
homework 2 SQL 10

Given a tuple t , we write t .Ai for the value in column Ai .

For instance, ('exam', 1, 'SQL', 14).topic = 'SQL'.

Database States

Let S = ({R1, . . . ,Rm }, schema, C) be a database schema.

A database state I for database schema S defines
for every relation name Ri ,
a finite set of tuples I(Ri) with respect to schema(Ri)

If schema(Ri) = (A1 : D1, . . . ,An : Dn), then

I(Ri) ⊆ dom(D1)× · · · × dom(Dn)

Thus I(Ri) is a relation in the mathematical sense.

Databases state = set of tables conforming to the schema:
Students

sid first last address
101 George Orwell London
102 Elvis Presley Memphis
103 Lisa Simpson Springfield
104 Bart Simpson Springfield
105 George Washington null

Exercises
category number topic maxPoints

exam 1 SQL 14
homework 1 Logic 10
homework 2 SQL 10

Except:
there is no order on the tuples (rows), and
tables contain no duplicate tuples.

Summary Database States

Database

Relation Relation Relation ≈ Classes

Tuple Tuple Tuple ≈ Objects

Attribute
Value

Attribute
Value

Attribute
Value

≈ Objects Properties

Relational Model :: Null Values

Null Values

The relational model allows missing attribute values.
(Table entries may be empty.)

Students
sid first last address
101 George Orwell London
102 Elvis Presley Memphis
103 Lisa Simpson Springfield
104 Bart Simpson Springfield
105 George Washington null

Formally, the set of possible values (the domain) for an attribute
is extended by a new special value “null”.

This “null” is not the number 0 or the empty string.
A null value is different from all values of any data type.

�

Null Values

Null values are used to model a variety of scenarios:

No value exists.
A student might not have an e-mail address.

The attribute is not applicable for this tuple.
Some exercises are for training only: no points will be given.

A value exists (in the real world), but is not known.
In table Students, address might be unknown for a student.

Any value will do.

Since the same null value is used for quite different purposes,
there can be no clear semantics.

Null Values: Advantages

Without null values, it would be necessary to split a relation
into many, more specific relations (“subclasses”).

Example
Students_with_address, Students_without_address

Alternatively: introduce an additional relation with schema

Students_Address(sid, address)

But this complicates queries: join operations are needed (upcoming).

If null values are not allowed
users might invent fake values to fill the missing columns

Fake values
Why are fake values a bad idea in database design?

Null Values: Problems

SQL uses a three-valued logic: true, false, unknown!
Any comparison with null yields the value unknown.
For users accustomed to two-valued logic, the outcome is often surprising.

Which of these queries return rows with null in column A?
1. select * from R where A = 42

2. select * from R where not (A = 42)

3. select * from R where A = null

None of these queries does!

To get the rows with null values, use ... where A is null.

Some languages do not know about null values.
Explicit null value check and treatment required when reading attribute values
into program variables. This complicates application programs.

Excluding Null Values

Since null values may lead to complications, SQL allows to
control whether an attribute value may be null or not.

By default, null values are allowed.

create table Students (
sid numeric(3,0) not null,
first varchar(20) not null,
last varchar(20) not null,
address varchar(80)

)

Declaring attributes as not null leads to
simpler application programs, and
fewer surprises during query evaluation.

Relational Model :: Integrity Constraints

Valid Database States

Primary goal of database design
Database should model the relevant part of the real world.

The plain definition of tables often allows too many
(meaningless, illegal) database states.

A valid database state?
Customer

number name birth_year city . . .
1 Smith 1936 Pittsburgh . . .
2 Jones 1965 Philadelphia . . .
3 Brown 64 New York . . .
3 Ford 2015 Washington . . .

customer numbers must be unique
the year of birth must be greater than 1870

customers must be at least 18 years old

Integrity Constraints

Integrity constraints (IC) are conditions which every database
state has to satisfy.

This restricts the set of possible database states.
Ideally only admits images of possible real world scenarios.

Integrity constraints are specified in the database schema.

The database management system will refuse any update
leading to a database state that violates any of the constraints.

Integrity Constraints in SQL

The SQL create table allows the following constraints:

Not Null:
No value in this column can be the null value.

Key constraints:
Each key value can appear once only.

Foreign keys constraints:
Values in a column must also appear as key values in another table.

Check constraints:
Column values must satisfy a given predicate.
SQL allows for inter-column CHECK constraints.

create table Products (
id int primary key,
name varchar(255) not null,
price numeric(10,2) check(price > 0)

)

Summary: Integrity Constraints

Why specify integrity constraints?

Constraints document knowledge about valid DB states.

Some protection against data input errors.

Enforcement of law / company standards.

Protection against inconsistency if data is stored
redundantly.

Queries/application programs become simpler if the
programmer may assume that the data fulfils certain
properties.

Relational Model :: Keys

Keys

A key of a relation R is a set of attributes {A1, . . . ,An } that
uniquely identify the tuples in R.

The key constraint is satisfied in the DB state I if and only if
t .A1 = u.A1 & . . . & t .An = u.An =⇒ t = u

for all tuples t ,u ∈ I(R).

So, different tuples differ in at least one of the values A1, . . . ,An.

If sid is declared a key for Students, this is illegal:
Students

sid first last address
101 George Orwell . . .
102 Elvis Presley . . .
101 Lisa Simpson . . .

Once a key has been declared the DBMS will refuse any
insertion of tuples with duplicate key values.

Composite Keys

If {A,B } is a key, rows may agree in A or B, but not both.

Students

sid first last address
103 Lisa Simpson . . .
104 Bart Simpson . . .
106 Bart Smit . . .

This relation
violates the key constraint first,
violates the key constraint last,
but satisfies the key constraint { first, last }.

Quiz
Do all relations have a key?

Minimality of Keys

Students
sid first last
103 Lisa Simpson
104 Bart Simpson
106 Bart Smit

What keys satisfy the key constraints?
{sid} minimal
{first, last} minimal
{sid, first}
{sid, last}
{sid, first, last}

Implication between key constraints
If A is a key and A (B, then B is also a key.
The key B is weaker (more database states are valid) than A.

Any superset of a key is itself a key.

A key {A1, . . . ,Ak } is minimal if no proper subset is a key.

In the literature, often keys are required to be minimal.

Multiple Keys

A relation may have more than one minimal key.

In the relational model, one key is designated as primary key.
A primary key cannot be null.

All other keys are called alternate or secondary keys.

The primary key attributes are often marked by underlining:

R(A1, . . . ,Ak ,Ak+1, . . . ,An)

Here {A1, . . . ,Ak } is the primary key of R.

It is good design practice to define a primary key that
consists of a single (simple) attribute only,
is never updated.

This is good for
consistency (applications might store the key), and
indexing and retrieving items.

Keys are Contraints

Keys are constraints: they refer to all possible DB states, not
only the current one.

create table Exercises (
...
primary key (category, number)

)

Students

sid first last address
101 George Orwell . . .
103 Lisa Simpson . . .

In this database state first is a key for Students. However, this
is too restrictive for all intended database states. A future
insertion of George Washington would be impossible.

When declaring keys, think about all intended database states!

Key Quiz

Keys for an appointment calendar
Appointments

date start end room event
Jan. 19 10:00 11:00 WN 726 Seminar
Jan. 19 14:00 16:00 WN 726 Lecture
May 24 14:00 18:00 Amsterdam Meeting

What would be correct minimal keys for this database?
What would be an example for a superkey?
Are additional constraints useful to exclude database
states that a key would still permit?

Relational Model :: Foreign Keys

Foreign Keys

The relational model does not provide explicit relationships,
links, or pointers.

Idea: use the key attributes to reference a tuple.
The values for the key attributes uniquely identify a tuple.

Foreign keys
To refer from a relation R to tuples of S:
add the primary key attributes of S to the attributes of R

Such a reference is only “stable” if the “address” of a tuple does
not change, that is, if the key attributes are not updated.

Foreign Keys

A foreign key implements a one-to-many relationship.

In table Results, sid is a foreign key referencing Students

Students
sid first last · · ·
101 George Orwell · · ·
102 Elvis Presley · · ·
103 Lisa Simpson · · ·
104 Bart Simpson · · ·
105 George Washington · · ·

Results
sid category number points
101 exam 1 12
101 homework 1 10
102 exam 1 10
102 homework 1 9
105 exam 1 7
107 homework 1 5

?

� Foreign keys are not themselves keys.
Here sid is not a key of Results.

We need an existence guarantee for key values in Students.

The set of sid values appearing in Students forms a dynamic
domain for the attribute Results.sid.

Foreign Key Constraints

Foreign key constraints in SQL
create table Results (
...
foreign key (sid) references Students(sid)

)

The foreign key constraint ensures that
for every tuple in t ∈ Results where t .sid is not null,

there exist a tuple u ∈ Students
such that t .sid = u.sid

Foreign keys may be null, unless with not null constraint.
This corresponds to a “null” pointer in programming languages.

The referential integrity of the database is ensured by
enforcing the foreign key constraints.

Foreign Key Constraints

Once the foreign key is declared, the the following update
update operations violate the foreign key constraint:

Insertion into table Results
without matching tuple in Students

DBMS rejects the update

Deletion from table Students
if the deleted tuple is referenced in Results

DBMS rejects the update, or

deletion cascades, that is, tuples in Results referencing
the deleted tuple will also be deleted, or

the foreign key is set to null in Results.
Configure using: on delete cascade | set null | ...

Foreign Keys and Notation

Only keys may be referenced (primary or secondary).
References to non-key attributes are not permitted.

A table with a composite key must be referenced with a
composite foreign key that has the same number of
attributes and domains.
It is not required that the corresponding attributes have identical names.

Foreign keys are denoted with arrows (→) in the schema.
Composite keys appear in parentheses:

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid → Students, (category, number) → Exercises, points)

Typically the primary key is referenced, so it suffices to list the target relation.

