Databases

Jorg Endrullis
VU University Amsterdam

2015

Databases

A database (DB) is a collection of data with
B a certain logical structure
B g specific semantics
® a specific group of users

A database management system (DBMS) allows to
® create, modify and manipulate a database
query (retrieve) the data using a query language
B support persistent storage of large amounts of data
® enable durability and recovery from failure
® control access to the data by many users in parallel
B without unexpected interactions among users (isolation)
B actions on the data should never be partial (atomicity)

Databases

Why not just store data in files?
® no query language
® |ogical structure limited to directories
® no efficient access
® searching through a large file can take hours
® no or limited protection from data loss
® no access control for parallel manipulation of data

Motivation for Database Management Systems

Motivation for database management systems

® data independence
B |ogical view on the data independent of physical storage
B user interacts with a simple view on the data

B behind the scenes (invisible for the user) are complex
storage structures that allow rapid access and manipulation

m avoidance of duplication
m different views on the same database
m for different users or different applications
B hiding parts of the data for privacy or security
® high-level declarative query languages
B query tells what you want, independent of storage structure
m efficient data access (automatic query optimisation)

Relational Model

Schema: structure of the database = relations + constraints

Example Schema

® customer(id, name, street, city)
Primary key constraint on id

B account(depositor — customer, accountnr)

Foreign key constraint on depositor

customer

account
id name street city depositor accountnr
192837465 Johnson | 12 Aima | Palo Alto 19283465 101343
019283746 Smith 4 North Rye 019283746 215569

Various types of constraints:
® data types, constrained data types (domains), nullability

® columns constraints (e.g. unique, counter, time stamp,.
m check constraints (logical expression for domain integrity)

(e.g. age >= 18 AND age <= 150)

)

Relational Model

Instance: actual content (‘state’) of the database at some

moment

Example Relational Database Instance

customer account
id name street city depositor | accountnr
192837465 | Johnson | 12 Aima | Palo Alto 19283465 101343
019283746 Smith 4 North Rye 019283746 | 215569
192837465 | Johnson | 3 Alma | Palo Alto 192837465 | 201541
321123123 | Jones | 34 Main | Harisson 321123123 | 217343
019283746 Smith 7 South Rye 019283746 | 201762

® tuple record (row)

In the pure relational model, a table is a set of tuples:
® has no duplicate tuples (rows)
® no order on the tuples

View of Data

m Different applications might use different views
m Data is stored only once at the physical level
B good for consistency

ANSI SPARC Architecture: 3 levels

External

view 1 view 2 ooc view n

1

logical level

physical level Internal

Conceptual

ANSI| SPARC Architecture: 3 levels

= Physical level: how a record (e.g. information about some
product) is stored
® disk pages, index structures, byte layout, record order
m Logical level: also called ‘conceptual schema’
B describes data stored in the database, and
B relations among the data

SQL DDL (Data Definition Language)

CREATE TABLE SOLVED (STUDENT VARCHAR(40),
HOMEWORK NUMERIC(2),
POINTS NUMERIC(2));

CREATE VIEW SOLVED_HOMEWORK AS
SELECT STUDENT, HOMEWORK FROM SOLVED;

= View level:
B application programs hide details of data types
B hide information (e.g. exam grade) for privacy or security

Data Independence

Logical data independence: ability to modify the logical
schema without breaking existing applications

m gpplications access the views, not the logical database

Physical data independence: ability to modify the physical
schema without changing the logical schema
® e.g. a change in workload might cause the need for
m different indexing structures
B different database engine

m distributing the database on multiple machines
.

Declarative Query Language

Queries should:
® describe what information is sought

® not prescribe any particular method how to
compute/retrieve the desired information

Kowalski
Algorithm = Logic + Control

Imperative/procedural languages:
m explicit control
® implicit logic
Declarative/non-procedural languages:
® implicit control
m explicit logic
® e.g. logic programming (Prolog), functional programming
(Haskell), markup languages (HTML), ...

SQL = Structure Query Language

SQL is a declarative data manipulation language. The user
describes conditions the requested data is required to fulfil.

SQL Query

SELECT POINTS

FROM SOLVED

WHERE STUDENT = 'Ann Smith'
AND HOMEWORK = 3

® more concise than imperative languages

B |less expensive program development

B easier maintenance
® database system will

® optimise the query

B decides how to execute the query as fast as possible
m (usually) users do not need to think about efficiency

Motivation for Database Management Systems

Motivation for database management systems

® well-defined data models & data integrity constraints
® entity-relationship models (E/R)
B UML class diagrams
B relational model
B e.g. SQL table and constraint definitions
B meta language for describing
® data
data relationships
data semantics
B data constraints

Other models:
® object-oriented models (e.g. ODL)

m semi-structured data models (DTD, XML Schema)
. - ..

Entity Relationship Model

Entity relationship model
B entities = objects
B e.g. customers, accounts, bank branches
® relationship between entities

B e.g. account 101343 is held by customer Johnson
B relationship set descriptor associates customers with

accounts
= MEIS accountl-number
street — customer depositor account
\
city balance

m widely used for database design
m usually converted to the relational model

UML Class Diagram

UML class diagrams
m frequently used in database design

® similar to E/R diagrams
(Entities/Relationships — Classes/Associations)

Example Schema as UML Class diagram

customer

X account

e deposits > 0..*

+name ! P 2 | +account-number
+street < depositor +balance

+City

Motivation for Database Management Systems

Motivation for database management systems

® multiple users, concurrent access
B transactions with ACID properties

A transaction is a collection of operations that performs a
single logical function in a database application.

Database management system ensures ACID properties
= Atomicity: transaction executes fully (commit) or not at all
(abort)
® Consistency: database remains in a consistent state
where all integrity constraints hold

® |solation: multiple users can modify the database at the
same time but will not see each others partial actions

® Durability: once a transaction is committed successfully,
the modified data is persistent, regardless of disk crashes

Symmary

Why Database Management Systems?

® data independence
B |ogical view on the data independent of physical storage
avoidance of duplication
m different views on the same database
high-level declarative query languages (what, not how)
m efficient data access, automatic query optimisation
data models & data integrity (consistency)
multiple users, concurrent access
B transactions with ACID properties
m persistent storage, safety and high availability
B safety against failure (backup/restore)
m scalability (data could by much larger than main memory)
® indexing, scalable algorithms
B security

