
Databases – Introduction

Jörg Endrullis

VU University Amsterdam



Course Goals & Structure



Course Goals

Overall Goal
Thorough understanding of database concepts

from a user perspective
(not how databases work internally)

Learning Goals
Developing data models
Reasoning about good/bad design
(functional depencencies)
Understanding and writing non-trivial SQL statements
Basic knowledge of database programming

Motivation
Storing data is important everywhere in industry!



Course Structure

Introduction & Overview

Relational Model
Data Modelling

entity relationship diagrams (ER)
unified modelling language (UML)

From Conceptual to Relational Model
Advanced SQL

writing nested queries with joins

Functional Dependencies
reasoning about good/bad design
normalising a database schema

Transactions
analysing transaction schedules

Database APIs



Database Management Systems



Databases

A database (DB) is a collection of data with
a certain logical structure
a specific semantics
a specific group of users

A database management system (DBMS) allows to
create, modify and manipulate a database
query (retrieve) the data using a query language
support persistent storage of large amounts of data
enable durability and recovery from failure
control access to the data by many users in parallel

without unexpected interactions among users (isolation)
actions on the data should never be partial (atomicity)



Motivation for Database Management Systems

Why not just store data in files?
no query language
weak logical structure (limited to directories)
no efficient access

searching through a large file can take hours

no or limited protection from data loss
no access control for parallel manipulation of data

So we need database management systems. . .



ANSI SPARC Architecture



Motivation for Database Management Systems

Motivation for database management systems

data independence
logical view on the data independent of physical storage
user interacts with a simple view on the data
behind the scenes (invisible for the user) are complex
storage structures that allow rapid access and manipulation

avoidance of duplication
different views on the same database

for different users or different applications
hiding parts of the data for privacy or security

This is achieved by the ANSI SPARC Architecture . . .



ANSI SPARC Architecture: 3 levels

physical level

logical level

view 2view 1 . . . view n

Physical
(Internal)

Logical
(Conceptual)

View
(External)

Different applications might use different views
Data stored once at physical level (good for consistency)



ANSI SPARC Architecture: 3 levels

ANSI SPARC Architecture

View level:
application programs hide details of data types
hide information (e.g. exam grade) for privacy or security

Logical level: also called ‘conceptual schema’
describes data stored in the database, and
relations among the data

Physical level:
how the data is stored
disk pages, index structures, byte layout, record order

This ensures logical and physical data independence. . .



Data Independence

Logical data independence
Logical data independence is the ability to modify the logical
schema without breaking existing applications

applications access the views, not the logical database

Physical data independence
Physical data independence is the ability to modify the
physical schema without changing the logical schema

e.g. a change in workload might cause the need for
different indexing structures
different database engine
distributing the database on multiple machines
. . .



Relational Model



Relational Model

In this course, we work with relational databases.
View and logical level represent data as relations/tables.

Example relational database instance
Customers

id name street city
191 George 1 Main London
302 Elvis 12 East Amsterdam
239 Lisa 5 North New York

Accounts
depositor accountnr

191 101
302 217
239 205

row = tuple record: (302, Elvis, 12 East, Amsterdam)

In the pure relational model, a table is a set of tuples:
has no duplicate tuples (rows)
no order on the tuples



Relational Model: Schema

Database schema
= structure of the database, that is, relations + constraints

Example schema
Customers(id, name, street, city)
Accounts(depositor → Customers(id), accountnr)

Database instance
= actual content (‘state’) of the database at some moment

Example instance
Customers

id name street city
191 George 1 Main London
239 Lisa 5 North New York

Accounts
depositor accountnr

191 101
239 205



Structured Query Language



Motivation for Database Management Systems

Motivation for database management systems

high-level declarative query languages
query tells what you want, independent of storage structure
efficient data access (automatic query optimisation)

Declarative query languages:
describe what information is sought
not prescribe how to retrieve the desired information



Imperative vs. Declarative Languages

Algorithm = Logic + Control (Kowalski)

Imperative languages:
explicit control
implicit logic

Declarative languages:
implicit control
explicit logic

Examples of declarative languages
logic programming (e.g. Prolog),
functional programming (e.g. Haskell),
markup languages (e.g. HTML), . . .

Relational databases usually use SQL as query language . . .



SQL = Structured Query Language

SQL is a declarative data manipulation language. The user
describes conditions the requested data is required to fulfil.

SQL Query
select id
from Customers
where name = 'Elvis' and city = 'Amsterdam'

More concise than imperative languages:
less expensive program development
easier maintenance

Database system will optimise the query:
decides how to execute the query as fast as possible
users (usually) do not need to think about efficiency



Data Models & Integrity Constraints



Motivation for Database Management Systems

Motivation for database management systems

well-defined data models & data integrity constraints
relational model
meta language for describing

data
data relationships
data constraints

SQL can be used for table and constraint definitions . . .



Integrity Constraints

Example schema with key constraints
Customers(id, name, street, city)
Primary key constraint on id
Accounts(depositor → Customers(id), accountnr)
Foreign key constraint on depositor

Various types of constraints:
data types, constrained data types (domains)
(e.g. numeric(2,0), varchar(40), . . . )
columns constraints
(e.g. unique, nullability, counter, . . . )
check constraints: logical expression for domain integrity
(e.g. age >= 18 and age <= 150)



SQL DDL (Data Definition Language)

Creating a table with constraints
create table Solved (

id int auto_increment,
name varchar(40) not null,
homework numeric(2,0) not null,
points numeric(2,0) not null check (points <= 10),
primary key (id)

);

Note the data types and constraints!

Solved
id name homework points

Creating a view
create view SolvedHomework as

select id, name, homework
from Solved;



Concurrent Access & Transactions



Concurrent Access & Transactions

Motivation for database management systems
multiple users, concurrent access

transactions with ACID properties

A transaction is a sequence of operations that performs a
single logical function in a database application.

Database management system ensures ACID properties
Atomicity: transaction executes fully (commit) or not at all
(abort)
Consistency: database remains in a consistent state
where all integrity constraints hold
Isolation: multiple users can modify the database at the
same time but will not see each others partial actions
Durability: once a transaction is committed successfully,
the modified data is persistent, regardless of disk crashes



Designing Database Schemes



Entity Relationship (ER) Model

Entity relationship (ER) model
entities = objects

e.g. customers, accounts, bank branches
relationship between entities

e.g. account 217 is held by customer Elvis
relationship set descriptor links customers with accounts

Customers

id
name

street

city

Accounts

account-number

balance

depositor



UML Class Diagram

UML class diagrams
similar to ER diagrams:
entities/relationships =⇒ classes/associations

Example schema as UML class diagram

1 0..*

Customers

+id
+name
+street
+city

Accounts

+account-number
+balance

deposits .

/ depositor

Conceptual design is usually converted to the relational model.



Summary



Summary

Why Database Management Systems?
data independence

logical view on the data independent of physical storage
avoidance of duplication

different views on the same database
high-level declarative query languages (what, not how)

efficient data access, automatic query optimisation

data models & data integrity (consistency)
multiple users, concurrent access

transactions with ACID properties
persistent storage, safety and high availability

safety against failure (backup/restore)
scalability (data could by much larger than main memory)

indexing, scalable algorithms

security (user permission management)


