\begin{frame}
\frametitle{Average Value of a Function}
Let $F$ be an antiderivative of $f$. We know that
\begin{talign}
f_{\text{avg}} = \frac{1}{b-a} \int_a^b f(x) \, dx
\mpause[1]{= \frac{1}{b-a} (F(b) - F(a))}
\end{talign}
\pause\pause
By the Mean Value Theorem there exists $c$ in $[a,b]$ such that
\begin{talign}
f(c) = \frac{1}{b-a} (F(b) - F(a))
\end{talign}
\pause\medskip
Thus we obtain:
\begin{block}{Mean Value Theorem \emph{for Integrals}}
If $f$ is continuous an $[a,b]$, then there exists a number $c$ in $[a,b]$ such that:\vspace{-1ex}
\begin{talign}
f(c) \;=\; f_{\text{avg}} \;=\; \frac{1}{b-a} \int_a^b f(x) \, dx
\end{talign}
\pause
that is,\vspace{-2.2ex}
\begin{talign}
f(c) (b-a) \;=\; \int_a^b f(x) \, dx
\end{talign}
\end{block}
\vspace{10cm}
\end{frame}