\begin{frame}
\frametitle{Indefinite Integrals: Applications}
\applications
\begin{exampleblock}{}
\begin{itemize}
\pause
\item $V(t)$ is the amount of water in a reservoir at time $t$
\pause
\item $V'(t)$ is the rate at which water flows in or out
\end{itemize}
\pause
Then
\begin{talign}
\int_{t_1}^{t_2} V'(t) dt = V(t_2) - V(t_1)
\end{talign}
is the net change in the amount of water from time $t_1$ to $t_2$.
\end{exampleblock}
\vspace{10cm}
\end{frame}