Calculus M211

Jörg Endrullis

Indiana University Bloomington

2013

The Fundamental Theorem of Calculus establishes a connection between:

- differentiation calculus, and
- integration calculus

The Fundamental Theorem of Calculus establishes a connection between:

- differentiation calculus, and
- integration calculus

Differentiation and integration are inverse processes!

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

1. If

$$g(x) = \int_{a}^{x} f(t)dt$$

then g'(x) = f(x).

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

1. If

$$g(x) = \int_{a}^{x} f(t) dt$$

then g'(x) = f(x).

2. Let F be any antiderivative of f, that is, F' = f. Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

1. If

$$g(x) = \int_{a}^{x} f(t) dt$$

then g'(x) = f(x).

2. Let F be any antiderivative of f, that is, F' = f. Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

The first part of the theorem can be written as:

$$\frac{d}{dx} \int_{2}^{x} f(t) dt = f(x)$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

1. If

$$g(x) = \int_{a}^{x} f(t) dt$$

then g'(x) = f(x).

2. Let F be any antiderivative of f, that is, F' = f. Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

The first part of the theorem can be written as:

$$\frac{d}{dx} \int_{2}^{x} f(t) dt = f(x)$$

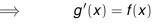
The second part can be written as:

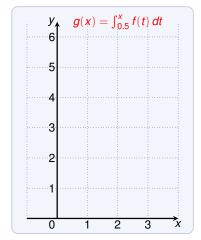
$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

$$g(x) = \int_{a}^{x} f(t)dt$$
 \Longrightarrow $g'(x) = f(x)$

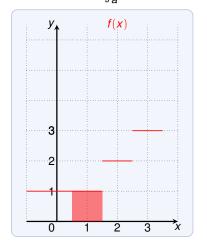
$$g(x) = \int_{a}^{x} f(t)dt$$

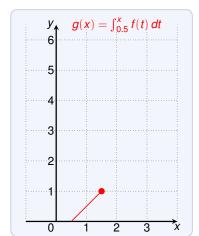
$$y \qquad f(x)$$
3
$$y \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad x$$





$$g(x) = \int_{a}^{x} f(t)dt$$
 \Longrightarrow





g'(x) = f(x)

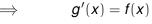
$$g(x) = \int_{a}^{x} f(t)dt$$

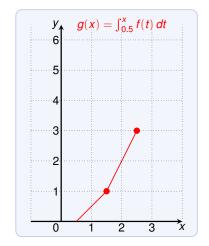
$$\frac{f(x)}{3}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{3}$$



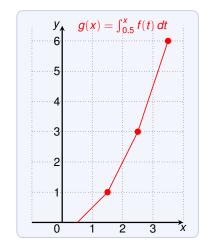


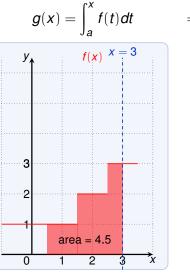
$$g(x) = \int_{a}^{x} f(t)dt$$

$$y = \int_{a}^{x} f(t)dt$$

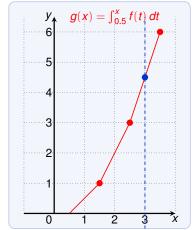
$$y = \int_{a}^{x} f(t)dt$$

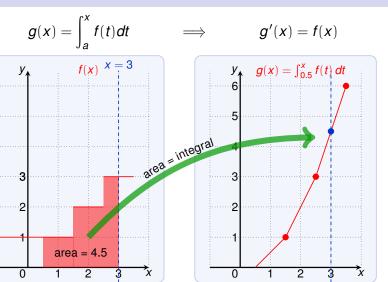
$$\Rightarrow \qquad g'(x) = f(x)$$

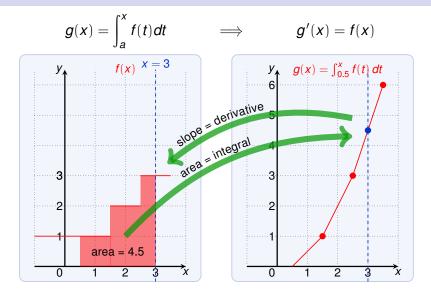


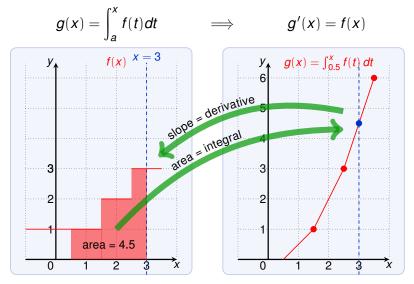


$$\Rightarrow \qquad g'(x) = f(x)$$

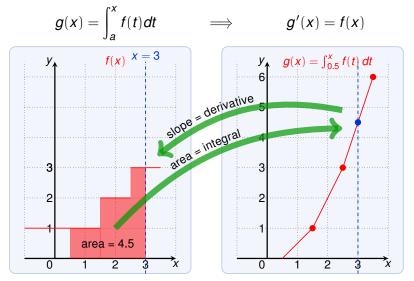








Observe: g'(x) = f(x) except where f is not continuous.



Observe: g'(x) = f(x) except where f is not continuous.

The slope (derivative) is the inverse of taking the area (integral).

Fundamental Theorem of Calculus

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Fundamental Theorem of Calculus

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

$$\int_0^x \sin x \, dx =$$

Fundamental Theorem of Calculus

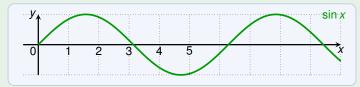
- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

$$\int_0^x \sin x \, dx = F(x) - F(0)$$

Fundamental Theorem of Calculus

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

$$\int_0^x \sin x \, dx = F(x) - F(0) = -\cos x - (-\cos 0)$$



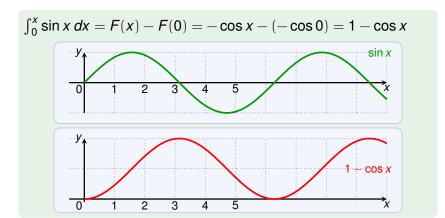
Fundamental Theorem of Calculus

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

$$\int_0^x \sin x \, dx = F(x) - F(0) = -\cos x - (-\cos 0) = 1 - \cos x$$

Fundamental Theorem of Calculus

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.



Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the derivative of

$$g(x) = \int_0^x \sqrt{1 + t^2} dt$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the derivative of

$$g(x) = \int_0^x \sqrt{1 + t^2} dt$$

By the Fundamental Theorem of Calculus, part 1:

$$g'(x) = \sqrt{1 + x^2}$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find

$$g(x) = \frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find

$$g(x) = \frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$$

Lets introduce a name for the integral without x^4 :

$$f(x) = \int_{1}^{x} \sec t \, dt$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find

$$g(x) = \frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$$

Lets introduce a name for the integral without x^4 :

$$f(x) = \int_{1}^{x} \sec t \, dt \qquad f'(x) =$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find

$$g(x) = \frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$$

Lets introduce a name for the integral without x^4 :

$$f(x) = \int_{1}^{x} \sec t \, dt \qquad f'(x) = \sec x$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find

$$g(x) = \frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$$

Lets introduce a name for the integral without x^4 :

$$f(x) = \int_{1}^{x} \sec t \, dt \qquad f'(x) = \sec x$$

$$g(x) =$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

$$g(x) = \frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$$

Lets introduce a name for the integral without x^4 :

$$f(x) = \int_{1}^{x} \sec t \, dt \qquad f'(x) = \sec x$$

$$g(x) = \frac{d}{dx}f(x^4)$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find

$$g(x) = \frac{d}{dx} \int_{1}^{x^4} \sec t \, dt$$

Lets introduce a name for the integral without x^4 :

$$f(x) = \int_{1}^{x} \sec t \, dt$$
 $f'(x) = \sec x$

$$g(x) = \frac{d}{dx}f(x^4) = f'(x^4) \cdot 4x^3$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find

$$g(x) = \frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$$

Lets introduce a name for the integral without x^4 :

$$f(x) = \int_{1}^{x} \sec t \, dt$$
 $f'(x) = \sec x$

$$g(x) = \frac{d}{dx}f(x^4) = f'(x^4) \cdot 4x^3 = \sec(x^4) \cdot 4x^3$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

The second part yields an easy method for evaluating integrals!

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

The second part yields an easy method for evaluating integrals!

Evaluate the integral

$$\int_{1}^{3} e^{x} dx$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

The second part yields an easy method for evaluating integrals!

Evaluate the integral

$$\int_{1}^{3} e^{x} dx$$

Note that e^x is continuous

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

The second part yields an easy method for evaluating integrals!

Evaluate the integral

$$\int_{1}^{3} e^{x} dx$$

Note that e^x is continuous, and an antiderivative is $F(x) = e^x$.

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

The second part yields an easy method for evaluating integrals!

Evaluate the integral

$$\int_{1}^{3} e^{x} dx$$

Note that e^x is continuous, and an antiderivative is $F(x) = e^x$.

$$\int_1^3 e^x \, dx =$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

The second part yields an easy method for evaluating integrals!

Evaluate the integral

$$\int_{1}^{3} e^{x} dx$$

Note that e^x is continuous, and an antiderivative is $F(x) = e^x$.

$$\int_1^3 e^x \, dx = e^3 - e$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

The second part yields an easy method for evaluating integrals!

Evaluate the integral

$$\int_{1}^{3} e^{x} dx$$

Note that e^x is continuous, and an antiderivative is $F(x) = e^x$.

$$\int_1^3 e^x \, dx = e^3 - e$$

We could have used any antiderivative $F(x) = e^x + C!$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

We often use the notation:

$$F(x)$$
 $\Big]_a^b = F(b) - F(a)$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

We often use the notation:

$$F(x)$$
_a = $F(b) - F(a)$

Then

$$\int_{a}^{b} f(x) dx = F(x) \Big]_{a}^{b}$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

We often use the notation:

$$F(x)$$
 $\Big|_a^b = F(b) - F(a)$

Then

$$\int_{a}^{b} f(x) dx = F(x) \Big]_{a}^{b}$$

Alternative notation

$$F(x)|_a^b = [F(x)]_a^b = F(x)]_a^b$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x)=x^2$$

from 0 to 1.

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x) = x^2$$

from 0 to 1.

From 0 to 1 the curve is above the x-axis.

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x) = x^2$$

from 0 to 1.

From 0 to 1 the curve is above the x-axis. Thus area = integral.

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x) = x^2$$

from 0 to 1.

From 0 to 1 the curve is above the x-axis. Thus area = integral.

An antiderivative of f is F(x) =

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x) = x^2$$

from 0 to 1.

From 0 to 1 the curve is above the x-axis. Thus area = integral.

An antiderivative of f is $F(x) = \frac{1}{3}x^3$.

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x) = x^2$$

from 0 to 1.

From 0 to 1 the curve is above the x-axis. Thus area = integral.

An antiderivative of f is $F(x) = \frac{1}{3}x^3$.

$$A = \int_0^1 x^2 dx =$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x) = x^2$$

from 0 to 1.

From 0 to 1 the curve is above the x-axis. Thus area = integral.

An antiderivative of f is $F(x) = \frac{1}{3}x^3$.

$$A = \int_0^1 x^2 dx = \frac{1}{3}x^3\Big]_0^1$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x) = x^2$$

from 0 to 1.

From 0 to 1 the curve is above the x-axis. Thus area = integral.

An antiderivative of f is $F(x) = \frac{1}{3}x^3$.

$$A = \int_0^1 x^2 dx = \frac{1}{3}x^3\Big]_0^1 = \frac{1}{3}1^3 - \frac{1}{3}0^3$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under the parabola

$$f(x) = x^2$$

from 0 to 1.

From 0 to 1 the curve is above the x-axis. Thus area = integral.

An antiderivative of f is $F(x) = \frac{1}{3}x^3$.

$$A = \int_{0}^{1} x^{2} dx = \frac{1}{3}x^{3} \Big]_{0}^{1} = \frac{1}{3}1^{3} - \frac{1}{3}0^{3} = \frac{1}{3}$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_a^b f(x) dx = F(b) F(a)$.

Evaluate

$$\int_3^{\infty} \frac{1}{x} dx$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_3^6 \frac{1}{x} dx$$

An antiderivative of $f(x) = \frac{1}{x}$ is F(x) =

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_3^6 \frac{1}{x} dx$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_3^6 \frac{1}{x} dx$$

$$\int_{0}^{6} \frac{1}{x} dx =$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_3^6 \frac{1}{x} dx$$

$$\int_3^6 \frac{1}{x} dx = \ln|x| \Big]_3^6$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_3^6 \frac{1}{x} dx$$

$$\int_{2}^{6} \frac{1}{x} dx = \ln|x| \Big]_{3}^{6} = \ln 6 - \ln 3$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_3^6 \frac{1}{x} dx$$

$$\int_{3}^{6} \frac{1}{x} dx = \ln|x| \Big]_{3}^{6} = \ln 6 - \ln 3 = \ln \frac{6}{3}$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_3^6 \frac{1}{x} dx$$

$$\int_{3}^{6} \frac{1}{x} dx = \ln|x| \Big]_{3}^{6} = \ln 6 - \ln 3 = \ln \frac{6}{3} = \ln 2$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under $\cos x$ from 0 to b where $0 \le b \le \pi/2$.

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under $\cos x$ from 0 to b where $0 \le b \le \pi/2$.

For $0 \le x \le \pi/2$, we have $\cos x \ge 0$.

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under
$$\cos x$$
 from 0 to b where $0 \le b \le \pi/2$.

For $0 \le x \le \pi/2$, we have $\cos x \ge 0$. Thus area = integral.

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under
$$\cos x$$
 from 0 to b where $0 \le b \le \pi/2$.

For $0 \le x \le \pi/2$, we have $\cos x \ge 0$. Thus area = integral.

An antiderivative of $f(x) = \cos x$ is F(x) =

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under
$$\cos x$$
 from 0 to b where $0 \le b \le \pi/2$.

For
$$0 \le x \le \pi/2$$
, we have $\cos x \ge 0$. Thus area = integral.

An antiderivative of $f(x) = \cos x$ is $F(x) = \sin x$.

Fundamental Theorem of Calculus

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under
$$\cos x$$
 from 0 to b where $0 < b < \pi/2$.

For
$$0 \le x \le \pi/2$$
, we have $\cos x \ge 0$. Thus area = integral.

An antiderivative of
$$f(x) = \cos x$$
 is $F(x) = \sin x$. Then

$$\int_{0}^{b} \cos x \ dx =$$

Fundamental Theorem of Calculus

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under
$$\cos x$$
 from 0 to b where $0 \le b \le \pi/2$.

For
$$0 \le x \le \pi/2$$
, we have $\cos x \ge 0$. Thus area = integral.

An antiderivative of
$$f(x) = \cos x$$
 is $F(x) = \sin x$. Then

$$\int_0^b \cos x \, dx = \sin x \Big]_0^b$$

Fundamental Theorem of Calculus

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under
$$\cos x$$
 from 0 to b where $0 \le b \le \pi/2$.

For
$$0 \le x \le \pi/2$$
, we have $\cos x \ge 0$. Thus area = integral.

An antiderivative of
$$f(x) = \cos x$$
 is $F(x) = \sin x$. Then

$$\int_0^b \cos x \, dx = \sin x \Big]_0^b = \sin b - \sin 0$$

Fundamental Theorem of Calculus

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Find the area under
$$\cos x$$
 from 0 to b where $0 \le b \le \pi/2$.

For
$$0 \le x \le \pi/2$$
, we have $\cos x \ge 0$. Thus area = integral.

An antiderivative of
$$f(x) = \cos x$$
 is $F(x) = \sin x$. Then

$$\int_0^b \cos x \, dx = \sin x \Big]_0^b = \sin b - \sin 0 = \sin b$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

An antiderivative of $f(x) = \frac{1}{x^2}$ is F(x) =

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

$$\int_{-1}^{3} \frac{1}{x^2} dx =$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

$$\int_{-1}^{3} \frac{1}{x^2} dx = -\frac{1}{x} \Big]_{-1}^{3}$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

$$\int_{-1}^{3} \frac{1}{x^2} dx = -\frac{1}{x} \Big]_{-1}^{3} = -\frac{1}{3} - (-\frac{1}{-1})$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

$$\int_{-1}^{3} \frac{1}{x^2} dx = -\frac{1}{x} \Big]_{-1}^{3} = -\frac{1}{3} - (-\frac{1}{-1}) = -\frac{4}{3}$$

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t)dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

An antiderivative of $f(x) = \frac{1}{x^2}$ is $F(x) = -\frac{1}{x}$. Then

$$\int_{-1}^{3} \frac{1}{x^2} dx = -\frac{1}{x} \Big]_{-1}^{3} = -\frac{1}{3} - (-\frac{1}{-1}) = -\frac{4}{3}$$

Does this make sense?

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

An antiderivative of $f(x) = \frac{1}{x^2}$ is $F(x) = -\frac{1}{x}$. Then

$$\left[\int_{-1}^{3} \frac{1}{x^{2}} dx = -\frac{1}{x} \right]_{-1}^{3} = -\frac{1}{3} - (-\frac{1}{-1}) = -\frac{4}{3}$$

Does this make sense? Note that $\frac{1}{x^2}$ is above the *x*-axis!

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$

An antiderivative of $f(x) = \frac{1}{x^2}$ is $F(x) = -\frac{1}{x}$. Then

$$\int_{-1}^{3} \frac{1}{x^2} dx = -\frac{1}{x} \Big]_{-1}^{3} = -\frac{1}{3} - (-\frac{1}{-1}) = -\frac{4}{3}$$

Does this make sense? Note that $\frac{1}{x^2}$ is above the *x*-axis!

The calculation is wrong since $\frac{1}{x^2}$ is not continuous on [-1,3]!

Fundamental Theorem of Calculus

Suppose f is a continuous function on [a, b]. Then

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- 2. If F' = f, then $\int_{a}^{b} f(x) dx = F(b) F(a)$.

Evaluate

$$\int_{-1}^{3} \frac{1}{x^2} dx$$
 does not exist

An antiderivative of $f(x) = \frac{1}{x^2}$ is $F(x) = -\frac{1}{x}$. Then

$$\int_{-1}^{3} \frac{1}{x^2} dx = -\frac{1}{x} \Big]_{-1}^{3} = -\frac{1}{3} - (-\frac{1}{-1}) = -\frac{4}{3}$$

Does this make sense? Note that $\frac{1}{x^2}$ is above the *x*-axis!

The calculation is wrong since $\frac{1}{x^2}$ is not continuous on [-1,3]!