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Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus establishes a
connection between:

I differentiation calculus, and
I integration calculus

Differentiation and integration are inverse processes!
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Fundamental Theorem of Calculus

Fundamental Theorem of Calculus
Suppose f is a continuous function on [a,b]. Then

1. If

g(x) =
∫ x

a
f (t)dt

then g ′(x) = f (x).
2. Let F be any antiderivative of f , that is, F ′ = f . Then∫b

a
f (x)dx = F (b) − F (a)

The first part of the theorem can be written as:
d
dx

∫ x

a
f (t)dt = f (x)

The second part can be written as:∫b

a
F ′(x)dx = F (b) − F (a)
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g(x) =
∫ x

a
f (t)dt =⇒ g ′(x) = f (x)
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g(x) =

∫x
0.5 f (t)dt

area = integralslope = derivative

Observe: g ′(x) = f (x) except where f is not continuous.

The slope (derivative) is the inverse of taking the area (integral).
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does not exist
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1
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−
1
x

]3

−1
= −

1
3
− (−

1
−1

) = −
4
3

Does this make sense? Note that 1
x2 is above the x-axis!

The calculation is wrong since 1
x2 is not continuous on [−1,3]!
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