\begin{frame}
\frametitle{Fundamental Theorem of Calculus}
\fundamental
\medskip
The second part yields an easy method for evaluating integrals!
\pause
\begin{exampleblock}{}
Evaluate the integral
\begin{talign}
\int_1^3 e^x\,dx
\end{talign}
\pause
Note that $e^x$ is continuous\pause, and an antiderivative is $F(x) = e^x$.\pause
\begin{talign}
\int_1^3 e^x \,dx = \mpause[1]{e^3 - e}
\end{talign}
\pause\pause
We could have used any antiderivative $F(x) = e^x + C$\;!
\end{exampleblock}
\vspace{10cm}
\end{frame}