\frametitle{Antiderivatives / Integrals}

    If $F$ is an antiderivative of $f$ on an interval $I$, \\
    then the \emph{most general antiderivative} of $f$ on $I$ is
      F(x) + C
    where $C$ is an arbitrary constant.
    Find the general antiderivatives of the following functions:
      \item $f(x) = \sin x$\\
            $F(x) = \pause -\cos x + C$
      \item $g(x) = x^n$ \quad for $n \ne -1$\\

            $G(x) = \pause \frac{1}{n+1}x^{n+1} + C$
            If $n \ge 0$, then this is valid for any interval.
            If $n < 0$ \& $n \ne -1$, then valid for intervals not containing $0$.