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Optimization

We now use calculus to solve practical problems.

Challenge: convert word problems into mathematical problems
I understand the problem
I draw a diagram
I introduce notation
I translate the problem to the notation
I use calculus to solve it
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Optimization

A farmer has 2400ft of fencing and wants to fence a rectangular
field that borders a straight river. No fence needed along river.

What are the dimensions of the field with the largest area?

h

w

A

Introducing notation:
I let h be the height of the field
I let w be the width (parallel to river)
I let A be the area

What do we know?
2400 =

2h + w =⇒

w = 2400 − 2h

for h in [

0

,

1200

]

A = hw = h(2400 − 2h) = 2400h − 2h2 for h in [0,1200]

A is continuous on [0,1200], we use the Closed Interval Method:

A ′(h) = 2400 − 4h A ′(h) = 0 ⇐⇒ h = 2400/4 = 600

The value of A at critical number 600 and the interval ends are:
A(0) =

0

A(600) =

600 · 1200

A(1200) =

0

The dimensions of the field are: 600ft height, 1200ft width.
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Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:

I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:

I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height

I let r be the radius
I let V be the volume
I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius

I let V be the volume
I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume

I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V =

πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h

= 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1

=⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A =

2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh

= 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r

for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in

(0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) =

4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2

= (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r =

1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π

is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number

Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.

However, A(1/ 3
√

2π) must be the absolute minimum since:
I A is decreasing, A ′(r) < 0, for all r < 1/ 3

√
2π,

I A is increasing, A ′(r) > 0, for all r > 1/ 3
√

2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,

I A is increasing, A ′(r) > 0, for all r > 1/ 3
√

2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum since:

I A is decreasing, A ′(r) < 0, for all r < 1/ 3
√

2π,
I A is increasing, A ′(r) > 0, for all r > 1/ 3

√
2π.

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum

Then h = 1/(πr2)

=
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum

Then h = 1/(πr2) =
3
√

2π
2
/π

= 3
√

4π2/π3 = 2/ 3
√

2π = 2r
Hence radius r = 1/ 3

√
2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3

= 2/ 3
√

2π = 2r
Hence radius r = 1/ 3

√
2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π

= 2r
Hence radius r = 1/ 3

√
2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

h

r

Introducing notation:
I let h be the height
I let r be the radius
I let V be the volume
I let A be the surface area

V = πr2h = 1 =⇒ h = 1/(πr2)

A = 2πr2 + 2πrh = 2πr2 + 2/r for r in (0,∞)

A ′(r) = 4πr − 2/r2 = (4πr3 − 2)/r2

A ′(r) = 0 ⇐⇒ r = 1/ 3
√

2π is the only critical number
Cannot use Closed Interval Method since (0,∞) is not closed.
However, A(1/ 3

√
2π) must be the absolute minimum

Then h = 1/(πr2) =
3
√

2π
2
/π = 3

√
4π2/π3 = 2/ 3

√
2π = 2r

Hence radius r = 1/ 3
√

2π and height h = 2r minimizes the cost.



Optimization

The argument we have used on the last slide is the following:

First Derivative Test for Absolute Extreme Values
Let f be continuous, defined on an open or closed interval.
Let c be a critical number of f .

I If f ′(x) > 0 for all x < c, and f ′(x) < 0 for all x > c,
then f (c) is the absolute maximum of f .

I If f ′(x) < 0 for all x < c, and f ′(x) > 0 for all x > c,
then f (c) is the absolute minimum of f .



Optimization

Find the point on the parabola y2 = 2x that is closest to (1,4).

x

y

1

1 2 30

(1,4)

(x , y)

d

Introducing notation:
I let d be the distance of (x , y) to (1,4)

Then
d =

√
(x − 1)2 + (y − 4)2 x = y2/2

Square root makes derivative complicated.
Note that d minimal ⇐⇒ d2 minimal.
Thus, instead of d we minimize d2!

f (y) = d2 =

(y2/2 − 1)2 + (y − 4)2

f ′(y) =

2(y2/2 − 1)y + 2(y − 4) = y3 − 8
f ′(y) = 0 ⇐⇒ y = 2

Moreover f ′(y) < 0 for all y < 2 and f ′(y) > 0 for all y > 2.
Thus by the First Derivative Test for Absolute Extrema, f (2) is
the absolute minimum. Thus the point (

2

,

2

) is closest to (1,4).
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Optimization

A man wants wants to get from point A on one side of a 3km
wide river to point B, 8km downstream on the opposite side. He
can row 6km/h and run 8km/h. Where to land to be fastest?

row

run

3km

8kmC
x

A

B

Introducing notation:
I let C be the landing point
I let x = downstream distance of A to C

The time for rowing is and running:
trow(x) =

(
√

32 + x2)/6
trun(x) = (8 − x)/8

The total time is t(x) = trow(x) + trun(x) for x in [

0

,

8

]

t ′(x) =

x
6
√

32 + x2
−

1
8

t ′(x) = 0 ⇐⇒ x = 9/
√

7

t ′(x) = 0 ⇐⇒ 3
√

32 + x2 = 4x x≥0⇐⇒ 9(32 + x2) = 16x2

⇐⇒ 7x2 = 81 ⇐⇒ x2 = 81/7 x≥0⇐⇒ x = 9/
√

7

Now we apply the Closed Interval Method:
t(0) =

1.5

t(9/
√

7) =

1 +
√

7/8 ≈ 1.33

t(8) =

√
73/6 ≈ 1.42

Thus landing

9/
√

7

km downstream is the fastest.
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Optimization

Find the area of the largest rectangle that can be inscribed in a
semi-circle circle of radius r .
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y

-r r0
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corner of the rectangle
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Find the area of the largest rectangle that can be inscribed in a
semi-circle circle of radius r .
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Optimization

A store sells 100 blu-ray players per week for 200$ each. A
market survey shows that for each 10$ discount, the store
would sell 40 more players per week. The store buys the
players at a price of 150$ per piece.

What selling price would maximize the profit of the store?
Introducing notation:

I let x be the discount
I let s be the number of players sold, and p the profit

s(x) =

100 + 40 · x
10

= 100 + 4x

p(x) = s(x) · (200 − x − 150) = (100 + 4x) · (50 − x)
= −4x2 + 100x + 5000 for x in [

0

,

50

]

p ′(x) = −8x + 100 p ′(x) = 0 ⇐⇒ x = 12.5

Note that p(x) is continuous, and
p(0) =

5000

p(12.5) =

5625

p(50) =

0

By the Closed Interval Method, 12.5$ discount for maximal profit.
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By the Closed Interval Method, 12.5$ discount for maximal profit.




