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Optimization

We now use calculus to solve practical problems.

Challenge: convert word problems into mathematical problems
» understand the problem

draw a diagram

introduce notation

translate the problem to the notation

use calculus to solve it
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A farmer has 2400ft of fencing and wants to fence a rectangular
field that borders a straight river. No fence needed along river.

What are the dimensions of the field with the largest area?
Introducing notation:

w
e A i "Eh » let h be the height of the field
m » let w be the width (parallel to river)

» let A be the area
What do we know?
2400 =2h+w — w =2400—2h for hin [0,1200]

A= hw = h(2400 — 2h) = 2400h — 2h? for hin [0, 1200]
Ais continuous on [0, 1200], we use the Closed Interval Method:
A’(h) = 2400 — 4h A'(h)=0 < h=2400/4 =600
The value of A at critical number 600 and the interval ends are:
A0) =0 A(600) = 600 - 1200 A(1200) =0

The dimensions of the field are: 600ft height, 1200ft width.
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A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.

Introducing notation:

let h be the height

let r be the radius

let V be the volume

let A be the surface area

V=nr’h=1 — h=1/(nr?

A=2nr?+2nrh=2nr? +2/r  for rin (0, 00)

A'(r) =4nr—2/r?> = (4nr* — 2)/r?

A'(r)=0 <= r=1/v2n is the only critical number
Cannot use Closed Interval Method since (0, co) is not closed.
However, A(1/v/27t) must be the absolute minimum since:

» Ais decreasing, A’(r) < 0, for all r < 1/v/2m,
» Aisincreasing, A’(r) > 0, forall r > 1/v/2m.
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A=2nr?+2nrh=2nr? +2/r  for rin (0, 00)
A'(r) = 4rr —2/r% = (4nr® — 2)/r?
A'(r)=0 <= r=1/v2n is the only critical number
Cannot use Closed Interval Method since (0, co) is not closed.
However, A(1/v/27t) must be the absolute minimum

Then h=1/(nr?) = — 2 /T

=
vV VvV y

v



Optimization
A cylindrical can is made to hold 1L of oil. Find the dimensions
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A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.
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A cylindrical can is made to hold 1L of oil. Find the dimensions
that minimize the cost of the metal to manufacture the can.
Introducing notation:
let h be the height
let r be the radius
let V be the volume
let A be the surface area
V=nr’h=1 — h=1/(nr?
A=2nr?+2nrh=2nr? +2/r  for rin (0, 00)
A'(r) = 4nr —2/r% = (4rr® — 2)/r?
A'(r)=0 <= r=1/v2n is the only critical number
Cannot use Closed Interval Method since (0, co) is not closed.
However, A(1/v/27t) must be the absolute minimum

Then h=1/(nr?) = \ﬁ /= 4n2/m8 = 2/v/2n =

Hence radius r = 1/v/2m and height h = 2r minimizes the cost.
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Optimization

The argument we have used on the last slide is the following:

First Derivative Test for Absolute Extreme Values

Let f be continuous, defined on an open or closed interval.
Let ¢ be a critical number of f.

>0 forall x < ¢,and f/(x) < 0 forall x > c,

» If f/(x
f(c) is the absolute maximum of f.

then

)
(
» If f'(x) <Oforall x < c,and f’(x) > 0 for all x > ¢,
then f(c) is the absolute minimum of f.
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L2 Square root makes derivative complicated.
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Thus by the First Derivative Test for Absolute Extrema, f(2) is
the absolute minimum.
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d » let d be the distance of (x, y) to (1,4)
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Find the point on the parabola y? = 2x that is closest to (1, 4).

Yy «(1,4) Introducing notation:
d » let d be the distance of (x, y) to (1,4)
(X, y) Then

d=\/(x—12+(y—42 x=y?2

Square root makes derivative complicated.
Note that d minimal <= d? minimal.
Thus, instead of d we minimize d?!

fly)=d?=(y?/2— 1)+ (y — 4)°
f'ly)=2(y?/2— 1)y +2(y—4)=y® -8
f'ly)=0 & y=2
Moreover f'(y) <0 forall y <2and f'(y) >0 forall y > 2.

Thus by the First Derivative Test for Absolute Extrema, f(2) is
the absolute minimum. Thus the point (2, 2) is closest to (1,4).
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A man wants wants to get from point A on one side of a 3km
wide river to point B, 8km downstream on the opposite side. He
can row 6km/h and run 8km/h. Where to land to be fastest?

~3km_, Introducing notation:
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