\begin{frame}
\frametitle{L'Hospital's Rule}
\begin{block}{}
A limit of the form
\begin{talign}
\lim_{x \to a} (f(x) - g(x))
\end{talign}
where
\begin{talign}
\lim_{x \to a} f(x) = \infty &&\text{and}&& \lim_{x \to a} g(x) = \infty
\end{talign}
is called \emph{indeterminate form of type $\infty - \infty$}.
\end{block}
\pause\medskip
We then rewrite the limit as a \emph{quotient}.
\end{frame}