\begin{frame}
\frametitle{Maximum and Minimum Values}
\begin{block}{Fermat's Theorem}
\alert{If} $f$ has a local maximum or minimum at $c$ and $f'(c)$ exists, \\
\alert{then} $f'(c) = 0$.
\end{block}
\pause\medskip
\begin{alertblock}{}
The reverse statement is not true!
Having $f'(c) = 0$ does not guarantee that $f(c)$ is a minimum or maximum.
\end{alertblock}
\pause\bigskip
\begin{minipage}{.4\textwidth}
\begin{center}
\scalebox{.7}{
\begin{tikzpicture}[default,baseline=1cm]
\diagram{-2}{2}{-2.5}{2.5}{1}
\diagramannotatey{-1,1,2}
\diagramannotatex{-1,1}
\diagramannotatez
\begin{scope}[cgreen,ultra thick]
\draw plot[smooth,domain=-1.4:1.4,samples=30] function{x**3};
\end{scope}
\begin{scope}[very thick]
\node[cgreen,include] (a) at (0,0) {};
\draw[cred] ($(a)+(-1cm,0)$) -- ($(a)+(1cm,0)$);
\end{scope}
\end{tikzpicture}
}
\end{center}
\end{minipage}
\begin{minipage}{.59\textwidth}
For example:
\begin{talign}
f(x) = x^3
\end{talign}
\pause
Then $f'(0) = 0$.\\
\pause
\alert{But there is no minimum or maximum.}
\end{minipage}
\vspace{10cm}
\end{frame}