\begin{frame}
\frametitle{Maximum and Minimum Values}
\begin{minipage}{.5\textwidth}
\begin{center}
\scalebox{.6}{
\begin{tikzpicture}[default,baseline=1cm]
\diagram{-.5}{6}{-.5}{4.5}{1}
\diagramannotatey{1,2,3}
\diagramannotatex{1,2,3,4,5}
\diagramannotatez
\begin{scope}[cgreen,ultra thick]
%\draw plot[smooth,domain=-1:4,samples=200] function{(3*x**4 - 16*x**3 + 18*x**2)/15};
\draw (1,2) to[out=45,in=-95] (2,4);
\draw (2,2) to[out=-70,in=170] (4,1);
\node[include] at (1,2) {};
\node[exclude] at (2,4) {};
\node[include] at (2,2) {};
\node[include] at (4,1) {};
\end{scope}
\end{tikzpicture}
}
\end{center}
\end{minipage}~%
\begin{minipage}{.49\textwidth}
\pause
Absolute minimum:\\\pause
$f(4) = 1$
\pause\medskip
Absolute maximum:\\\pause
none
\pause\medskip
Not continuous on $[1,4]$!
\end{minipage}
\pause\medskip
\begin{minipage}{.5\textwidth}
\begin{center}
\scalebox{.6}{
\begin{tikzpicture}[default,baseline=1cm]
\diagram{-.5}{6}{-.5}{4.5}{1}
\diagramannotatey{1,2,3}
\diagramannotatex{1,2,3,4,5}
\diagramannotatez
\begin{scope}[cgreen,ultra thick]
%\draw plot[smooth,domain=-1:4,samples=200] function{(3*x**4 - 16*x**3 + 18*x**2)/15};
\draw (1,1) to[out=45,in=-95] (2.8,4.5);
\node[exclude] at (1,1) {};
\draw[gray,dashed] (3,0) -- (3,4.5);
\end{scope}
\end{tikzpicture}
}
\end{center}
\end{minipage}~%
\begin{minipage}{.49\textwidth}
\pause
Absolute minimum:\\\pause
none
\pause\medskip
Absolute maximum:\\\pause
none
\pause\medskip
Continuous on $(1,3)$,
but this is not a closed interval!
\end{minipage}
\pause\smallskip
\begin{alertblock}{}
The function needs to be \emph{continuous} on a \emph{closed} interval $[a,b]$.\hspace{-10ex}
\end{alertblock}
\vspace{10cm}
\end{frame}