\begin{frame}
\frametitle{Maximum and Minimum Values}
\begin{center}\vspace{-2ex}
\scalebox{.85}{
\begin{tikzpicture}[default,baseline=1cm]
\def\diay{}
\diagram{-1}{5}{-.5}{3.5}{1}
\diagramannotatez
\def\xa{.5}
\def\xb{1.5}
\def\xc{2.5}
\def\xd{3}
\def\xe{4}
\def\xf{4.5}
\begin{scope}[gray]
\draw (\xa,1) -- node[black,at end,below] {$a$} (\xa,-.2);
\draw (\xb,2.5) -- node[black,at end,below] {$b$} (\xb,-.2);
\draw (\xc,2.8) -- node[black,at end,below] {$c$} (\xc,-.2);
\draw (\xd,1.5) -- node[black,at end,below] {$d$} (\xd,-.2);
\draw (\xe,3.5) -- node[black,at end,below] {$e$} (\xe,-.2);
\draw (\xf,1.5) -- node[black,at end,below] {$f$} (\xf,-.2);
\end{scope}
\begin{scope}[cgreen,ultra thick]
\draw (\xa,1) to[out=80,in=220] node[include,at start] {} node[include,at end] {} (\xb,2.5);
\draw (\xb,1.5) to[out=80,in=200] node[exclude,at start] {} node[exclude,at end] {} (\xc,2.8);
\draw (\xc,2) to[out=-70,in=180] node[include,at start] {} (\xd,1.5) to[out=0,in=-90,looseness=.5] (\xe,3.5) to[out=-90,in=120,looseness=.5] node[include,at end] {} (\xf,1.5);
\end{scope}
\end{tikzpicture}
}
\end{center}
Which of the points are global/local maxima/minima?
\begin{itemize}
\pause
\item [$a$] \ \pause global (absolute) minimum, but not a local minimum
\pause
\item [$b$] \ \pause local maximum
\pause
\item [$c$] \ \pause nothing
\pause
\item [$d$] \ \pause local minimum
\pause
\item [$e$] \ \pause local and global (absolute) maximum
\pause
\item [$f$] \ \pause nothing
\end{itemize}
\end{frame}