\begin{frame}
\frametitle{Maximum and Minimum Values}
\begin{exampleblock}{}
Where does
\begin{talign}
f(x) = x^2
\end{talign}
have local / global minima or maxima?
\pause\bigskip
The value \alert{$f(0) = 0$} is absolute and local minimum since:
\begin{talign}
f(0) = 0 \le x^2 = f(x) \quad\text{for all $x$}
\end{talign}
\pause
The function has no local or global maxima.
\end{exampleblock}
\pause
\begin{exampleblock}{}
\begin{minipage}{.7\textwidth}
Where does
\begin{talign}
f(x) = x^3
\end{talign}
have (local or global) minima or maxima?
\pause\bigskip
The function has no local or global extrema.
\end{minipage}
\pause
\begin{minipage}{.29\textwidth}
\scalebox{.6}{
\begin{tikzpicture}[default,baseline=1cm]
\diagram{-2}{2}{-2}{2.5}{1}
\diagramannotatey{1,2}
\diagramannotatex{1,2}
\diagramannotatez
\begin{scope}[ultra thick]
\draw[cgreen,ultra thick] plot[smooth,domain=-1.25:1.35,samples=200] function{x**3};
\end{scope}
\end{tikzpicture}
}
\end{minipage}
\end{exampleblock}
\end{frame}