\begin{frame}
\frametitle{Linear Approximation and Differentials}
\begin{exampleblock}{Final Exam 2004}
Use the linearization method to approximate $(1.98)^4$.
\pause\bigskip
We have $f(x) = x^4$.\pause\bigskip
We need to choose where to compute the linearization:
$a = \pause 2$.\pause
\begin{talign}
f(2) &= \mpause[1]{16} \\
\mpause[2]{f'(x) }&\mpause[2]{= }\mpause[3]{4x^3} &
\mpause[4]{f'(2) = }
\mpause[5]{4\cdot 2^3}
\mpause[6]{= 4 \cdot 8}
\mpause[7]{= 32}
\end{talign}
\pause\pause\pause\pause\pause\pause\pause\pause
The linearization of $f$ at $2$ is:\vspace{-.7ex}
\begin{talign}
L(x) = \mpause[1]{16 + 32(x-2)}
\end{talign}
\pause\pause
Then the approximation of $(1.98)^4$ is:\vspace{-.7ex}
\begin{talign}
(1.98)^4 \approx
\mpause[1]{L(1.98)}
&\mpause[2]{= 16 + 32(1.98 - 2)}
\mpause[3]{= 16 + 32(-0.02)}\\
&\mpause[4]{= 16 + 32(-\frac{1}{50})}
\mpause[5]{= 16 - \frac{16}{25}}
\mpause[6]{= \frac{16\cdot 24}{25}}
\end{talign}
\end{exampleblock}
\end{frame}