\begin{frame}
\frametitle{Linear Approximation and Differentials}
Why approximate values of a function using a tangent?
\begin{itemize}
\pause
\item might be easy to compute $f(a)$ and $f'(a)$,
\pause
\item but difficult to compute values $f(x)$ with $x$ near $a$
\end{itemize}
\pause
\begin{block}{}
We use the tangent line at $(a,f(a))$ to approximate $f(x)$ when $x$ is close to $a$.
\pause\medskip
The tangent at $(a,f(a))$ is:
\begin{talign}
L(x) = f(a) + f'(a)\cdot (x-a)
\end{talign}
\pause
This function is called \emph{linearization} of $f$ at $a$.
\pause\medskip
When $x$ is close to $a$, we approximate $f(x)$ by:
\begin{talign}
f(x) \approx f(a) + f'(a)\cdot (x-a)
\end{talign}
\pause
This is called
\begin{itemize}
\pause
\item \emph{linear approximation} of $f$ at $a$, or
\pause
\item \emph{tangent line approximation} of $f$ at $a$.
\end{itemize}
\end{block}
\end{frame}