\begin{frame}
\frametitle{2nd Midterm Exam - Review}
\begin{exampleblock}{}
Find all points on the curve where the slope of the tangent is $-1$\vspace{-1.2ex}
\begin{align*}
x^2y^2 + xy = 2
\end{align*}\vspace{-3.5ex}
\pause
\only<-6>{
We use implicit derivatives:\vspace{-1.2ex}
\begin{align*}
&\frac{d}{dx}(x^2y^2 + xy) = \frac{d}{dx} 2\\
&\mpause[1]{\implies\; x^2 \frac{d}{dx}y^2 + y^2 \frac{d}{dx}x^2 \quad+\quad x\frac{d}{dx}y + y \frac{d}{dx}x = 0 }\\
&\mpause[2]{\implies\; x^2 2yy' + y^2 2x \quad+\quad xy' + y = 0 }\\
&\mpause[3]{\stackrel{y'=-1}{\implies}\; -2x^2y + 2xy^2 - x + y = 0 }\\
&\mpause[4]{\implies\; (-x+y) \cdot (2xy+1) = 0 }
\end{align*}\vspace{-3.5ex}
}
\pause\pause\pause\pause\pause
The slope is $-1$ if \quad$x = y$\quad or \quad$xy = -1/2$\quad.\\\pause
\only<7->{
\medskip\pause
But when is $(x,y)$ on the original curve?\pause\vspace{-1.2ex}
\begin{align*}
x= y &\mpause[1]{\;\implies\; (x^2)^2 + x^2 = 2} \\
&\mpause[2]{\;\implies\; (x^2-1)(x^2+ 2) = 0} \\
&\mpause[3]{\;\implies\; x^2 = 1} \\
&\mpause[4]{\;\implies\; x = \pm 1} \\
&\mpause[5]{\;\implies\; \text{on the curve if $x = y = \pm 1$}}\\
\mpause[6]{xy= -1/2}
&\mpause[7]{\;\implies\; (xy)^2 + xy 2} \\
&\mpause[8]{\;\implies\; 1/4 + 1/2 = 2} \\
&\mpause[9]{\;\implies\; \text{can never be on the curve}}
\end{align*}\vspace{-3ex}
}
\pause\pause\pause\pause\pause\pause\pause\pause\pause\pause
The points on the curve with slope $-1$ are $(1,1)$ and $(-1,-1)$.
\end{exampleblock}
\vspace{10cm}
\end{frame}