\begin{frame}
\frametitle{Exponential Population Growth}
\begin{exampleblock}{}
The world population was
\begin{itemize}
\item 2560 million in 1950, and
\item 3040 million in 1960.
\end{itemize}
Assume a constant growth rate. Find a formula $P(t)$ with
\begin{itemize}
\item $P(t)$ in millions of people and
\item $t$ in years since 1950.
\end{itemize}
\pause
We have
\begin{talign}
&P(t) = P(0) e^{kt} \\
&\mpause[1]{P(0) = 2560}\\
&\mpause[2]{P(10) = 2560 e^{10k} = 3040}\\
&\mpause[3]{e^{10k} = \frac{3040}{2560}}
\mpause[4]{\;\;\implies\;\; k = \frac{1}{10}\ln \frac{3040}{2560} \approx 0.017}
\end{talign}
\pause\pause\pause\pause\pause
The world population growths with a rate of $1.7\%$ per year.
\end{exampleblock}
\end{frame}