\begin{frame}
\frametitle{Exponential Growth and Decay}
Often quantities grow or decay proportional to their size:
\begin{itemize}
\pause
\item growth of a population (animals, bacteria,\ldots)
\pause
\item decay of radioactive material
\pause
\item growth of savings on your bank account (interest rates)
\end{itemize}
\pause\bigskip
Assume that
\begin{itemize}
\pause
\item $y(t)$ be a quantity depending on time $t$
\pause
\item rate of change of $y(t)$ is proportional to $y(t)$
\end{itemize}
\pause
Then
\begin{talign}
y' = ky &&\mpause[1]{\text{or equivalently}} && \mpause[1]{\frac{d}{dt}y = ky}
\end{talign}
where $k$ is a constant. \pause\pause This equation is called:
\begin{itemize}
\pause
\item \emph{law of natural growth} if $k > 0$
\pause
\item \emph{law of natural decay} if $k < 0$
\end{itemize}
\end{frame}