\begin{frame}
\frametitle{Implicit Differentiation}
\begin{block}{}
We can use \emph{implicit differentiation}:
\begin{itemize}
\pause
\item differentiate both sides of the equation w.r.t. $x$, and
\pause
\item then solve for $y'$, that is, for $\frac{dy}{dx}$
\end{itemize}
\end{block}
\pause
\begin{exampleblock}{}
We differentiate $x^2 + y^2 = 25$ implicitly.
\pause
We have
\begin{talign}
&\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx} 25 \\[.5ex]
&\mpause[1]{ \frac{d}{dx} x^2 + \frac{d}{dx} y^2 = 0 } \\[.5ex]
&\mpause[2]{ 2x + \frac{d}{dx} y^2 = 0 } \hspace{1cm} \mpause[3]{ \text{\textcolor{gray}{$y$ is a function of $x$ $\implies$ chain rule}} }\\[.5ex]
&\mpause[4]{ 2x + \frac{d}{dy}(y^2) \frac{d}{dx}y = 0 } \\[.5ex]
&\mpause[5]{ 2x + 2y \frac{d}{dx}y = 0 }
\mpause[6]{\;\;\implies\;\; \frac{d}{dx}y = -\frac{x}{y} }
\mpause[7]{\;\;\implies\;\; \frac{dy}{dx} = -\frac{x}{y} }
\end{talign}
\end{exampleblock}
\vspace{10cm}
\end{frame}