\begin{frame}
\frametitle{Differentiation Rules: Chain Rule}
\begin{block}{Chain Rule}
If $g$ is differentiable at $x$ and $f$ at $g(x)$, then
\begin{talign}
h &= f \circ g &\text{or equivalently } && h(x) &= f(g(x))
\end{talign}
is differentiable at $x$ and
\begin{talign}
h'(x) \;=\; (f\circ g)'(x) \;=\; f'(g(x)) \cdot g'(x)
\end{talign}
\end{block}
\pause\bigskip
Intuition with rates of change:
\begin{itemize}
\pause
\item If $g'(x) = N$. Then $g(x)$ changes $N$ times as much as $x$.
\pause
\item If $f'(g(x)) = M$. Then $f(x)$ changes $M$ times as much as $g(x)$.\hspace*{-3ex}
\pause
\item Thus $(f\circ g)(x) = f(g(x))$ changes $N\cdot M$ times as much as~$x$.\hspace*{-5ex}\ \
\end{itemize}
\vspace{10cm}
\end{frame}