\begin{frame}
\frametitle{Differentiation Rules: Chain Rule}
Suppose we want to differentiate
\begin{talign}
f(x) = \sqrt{x^2 + 1}
\end{talign}
\pause
The rules, we have seen so far, do not help.
\pause\bigskip
However, we know how to differentiate the functions:
\begin{talign}
g(x) &= \sqrt{x} &
h(x) &= x^2 + 1
\end{talign}
\pause
We can write $f$ as:
\begin{talign}
f(x) = g(h(x))
\end{talign}
\pause
That is:
\begin{talign}
f = g\circ h
\end{talign}
\pause
\alert{We need a rule that gives us $f'$ from $g'$ and $h'$\ldots}
\end{frame}