\begin{frame}
\frametitle{Differentiation Rules: Product Rule}
\begin{block}{Product Rule}
If $f$ and $g$ are both differentiable, then
\begin{talign}
\frac{d}{dx} [f(x)\cdot g(x)] \;=\; f(x) \frac{d}{dx}( g(x) ) + g(x) \cdot \frac{d}{dx}( f(x) )
\end{talign}
\end{block}
\pause\medskip
In different notation
\begin{block}{}
\begin{malign}
(f\cdot g)'(x) \;=\; f(x) \cdot g'(x) + f'(x) \cdot g(x)
\end{malign}
\end{block}
\pause\medskip
In words:
\begin{itemize}
\item [] The derivative of the product of two function is the first function
times the derivative of the second function plus the second function times the derivative of the first.
\end{itemize}
\end{frame}