\begin{frame}
\frametitle{How can a Function fail to be Derivable?}
There are the following reasons for failure of being derivable:
\begin{center}
\scalebox{.7}{
\begin{tikzpicture}[default,baseline=1cm]
\diagram{-.5}{3}{-.5}{3}{1}
\diagramannotatez
\begin{scope}[ultra thick]
\draw[cred,dashed] (2,-.1) -- (2,3) node[at start,below] {$a$};
\draw[cgreen,ultra thick] plot[smooth,domain=-.5:2,samples=20] function{.5*x**2+.5};
\draw[cgreen,ultra thick] plot[smooth,domain=2:3,samples=20] function{.5*(x-4)**2+.5};
\end{scope}
\end{tikzpicture}~\quad~%
\begin{tikzpicture}[default,baseline=1cm]
\diagram{-.5}{3}{-.5}{3}{1}
\diagramannotatez
\begin{scope}[ultra thick]
\draw[cred,dashed] (1.5,-.1) -- (1.5,3) node[at start,below] {$a$};
\draw[cgreen,ultra thick] plot[smooth,domain=-.5:1.5,samples=20] function{sqrt(x+1)+.5};
\draw[cgreen,ultra thick] plot[smooth,domain=1.5:3,samples=20] function{.5+ sqrt(x-1)};
\node[include=cgreen] at (1.5,{sqrt(2.5)+.5}) {};
\node[exclude=cgreen] at (1.5,{.5+ sqrt(.5)}) {};
\end{scope}
\end{tikzpicture}~\quad~%
\begin{tikzpicture}[default,baseline=1cm]
\diagram{-.5}{3}{-.5}{3}{1}
\diagramannotatez
\begin{scope}[ultra thick]
\draw[cred,dashed] (1.5,-.1) -- (1.5,3) node[at start,below] {$a$};
\draw[cgreen,ultra thick] plot[smooth,domain=-.5:3,samples=200] function{1.5+sgn(x-1.5) * abs(x-1.5)**(1./3.)};
\end{scope}
\end{tikzpicture}
}
\end{center}
\begin{itemize}
\pause
\item graph changes direction abruptly (graph has a ``corner'')
\pause
\item the function is not continuous at $a$
\pause
\item graph has a vertical tangent at $a$, that is:
\begin{talign}
\lim_{x\to a} |f'(x)| = \infty
\end{talign}
\pause
Example for a vertical tangent is $f(x) = \sqrt[3]{x}$ at $0$.
\end{itemize}
\end{frame}