\begin{frame}
\frametitle{Derivative as a Function}
\begin{exampleblock}{}
Where is $f(x) = |x|$ differentiable?
\pause\medskip
For $x > 0$ we have:
\begin{itemize}
\pause
\item $|x| = x$,
\pause
\item $|x+h| = x+h$ for small enough $h$.
\end{itemize}
\pause
Thus for $x > 0$
\begin{talign}
f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}
\mpause[1]{= \lim_{h\to 0} \frac{x+h - x}{h}}
\mpause[2]{= \lim_{h\to 0} 1}
\mpause[3]{= 1}
\end{talign}
\pause\pause\pause\pause
For $x < 0$ we have:
\begin{itemize}
\pause
\item $|x| = -x$,
\pause
\item $|x+h| = -x-h$ for small enough $h$.
\end{itemize}
\pause
Thus for $x < 0$
\begin{talign}
f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}
\mpause[1]{= \lim_{h\to 0} \frac{-x-h + x}{h}}
\mpause[2]{= \lim_{h\to 0} -1}
\mpause[3]{= -1}
\end{talign}
\end{exampleblock}
\vspace{10cm}
\end{frame}