\begin{frame}
\frametitle{Continuity: Intermediate Value Theorem}
\begin{exampleblock}{}
Show that there is a root of the equation
\begin{talign}
4x^3 - 6x^2 + 3x - 2 = 0
\end{talign}
between $1$ and $2$.
\pause\medskip
We are looking for number $c$ such that $f(c) = 0$ and $1 < c < 2$.
\pause\medskip
We have:\\
\begin{itemize}
\pause
\item the function is continuous on the interval since it is a polynomial
\pause
\item $f(1) = 4 - 6 + 3 - 2 = -1$
\pause
\item $f(2) = 4\cdot 8 - 6\cdot 4 + 3\cdot 2 - 2 = 12$
\end{itemize}
\pause
Moreover $-1 < 0 < 12$. \pause
Thus we can apply the Intermediate Value Theorem for the interval $[1,2]$
and $N = 0$.
\pause\medskip
Hence there exists $c$ in $(1,2)$ such that $f(c) = 0$.
\end{exampleblock}
\end{frame}