\begin{frame}
\frametitle{Limits and One-Sided Limits}
We recall the following theorem:
\begin{block}{}
\begin{malign}
\lim_{x\to a} f(x) = L \quad \text{ if and only if } \quad
\lim_{x\to a^-} f(x) = L = \lim_{x\to a^+} f(x)
\end{malign}
\end{block}
\pause\bigskip
The theorem in words:
\begin{itemize}
\item
The limit of $f(x)$, for $x$ approaching $a$, is $L$
if and only if \\the left-limit and the right-limit at $a$ are both $L$.
\end{itemize}
\pause\bigskip
The limit laws also apply for one-sided limits!
\begin{itemize}
% \pause
% \item often easier to compute the one-sided limits
\pause
\item if $\lim_{x\to a^-} f(x) \alert{\ne} \lim_{x\to a^+} f(x)$\\
then $\lim_{x\to a} f(x)$ does not exist
\end{itemize}
\end{frame}