\begin{frame}
\frametitle{More Limits Laws}
\begin{block}{}
\begin{enumerate}
% \setcounter{enumi}{5}
\item $\lim_{x\to a} \;[f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
\item $\lim_{x\to a} \;[f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x)$
\item $\lim_{x\to a} \;[c \cdot f(x)] = c \cdot \lim_{x\to a} f(x)$
\item $\lim_{x\to a} \;[f(x) \cdot g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$
\item $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$ if $\lim_{x\to a} g(x) \ne 0$
\pause
\item $\lim_{x\to a} \;[f(x)]^n = [\lim_{x\to a} f(x)]^n$ for $n$ a positive integer
\pause
\item $\lim_{x\to a} \;c = c$
\pause
\item $\lim_{x\to a} \;x^n = a^n$
\pause
\item $\lim_{x\to a} \;\sqrt[n]{x} = \sqrt[n]{a}$ for $n$ a positive integer\\
(if $n$ is even we require $a > 0$)
\pause
\item $\lim_{x\to a} \;\sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$ for $n$ a positive integer\\
(if $n$ is even we require $\lim_{x\to a} f(x) > 0$)
\end{enumerate}
\end{block}
\end{frame}