\begin{frame}
\frametitle{Infinite Limits: Examples}
\begin{exampleblock}{}
Find
\begin{talign}
\lim_{x \to 3^-} \frac{2x}{x-3} &&\text{and}&& \lim_{x \to 3^+} \frac{2x}{x-3}
\end{talign}
\end{exampleblock}
\pause\smallskip
\begin{minipage}{1\textwidth}
\begin{itemize}
\item []
$\lim_{x \to 3^-} \frac{2x}{x-3} = \alt<-2>{?}{-\infty}$
\onslide<-2>{\choice{a} $0$ \choice{b} $1$ \choice{c} $\infty$ \choice{d} $-\infty$}
\pause\pause
\item []
$\lim_{x \to 3^+} \frac{2x}{x-3} = \alt<-4>{?}{\infty}$
\onslide<-4>{\choice{a} $0$ \choice{b} $1$ \choice{c} $\infty$ \choice{d} $-\infty$}
\end{itemize}
\end{minipage}
%
\hspace*{-.5\textwidth}\begin{minipage}{.49\textwidth}
\onslide<12->{\scalebox{.6}{
\begin{tikzpicture}[default,baseline=-1ex]
\diagram{-1}{5}{-2}{2}{0}
\diagramannotatez
\diagramannotatex{1,2,3,4}
\node at (0,1cm) [anchor=east,inner sep=1mm] {5};
\draw[cblue,ultra thick] plot[smooth,domain=-1:2.5,samples=20] function{(2*x)/(x-3)/5};
\draw[cblue,ultra thick] plot[smooth,domain=3.6:5,samples=20] function{(2*x)/(x-3)/5} node [below] {$f(x)$};
\draw [dashed,cred] (3cm,-2cm) -- (3cm,2cm);
\end{tikzpicture}
}}
\end{minipage}
\pause\pause\smallskip
If $x$ is close to $3$ and $x < 3$ (approaching from the left), then:
\begin{itemize}
\pause
\item $2x$ is close to $6$,
\pause
\item $x-3$ is a small negative number,
\pause
\item and thus $2x/(x-3)$ is a large negative number.
\end{itemize}
\pause
Hence $\lim_{x \to 3^-} \frac{2x}{x-3} = -\infty$.
\pause\smallskip
Similarly for $x$ close to $3$ and $x > 3$, but now $x-3$ is positive.
% But now $x-3$ is a small positive number,
% and hence $\lim_{x \to 3^+} \frac{2x}{x-3} = \infty$.
\end{frame}