\begin{frame}
\frametitle{Infinite Limits}
\begin{exampleblock}{}
We consider the function $\frac{1}{x^2}$. What is $\lim_{x\to 0} \frac{1}{x^2}$ ?
\end{exampleblock}
\begin{center}
\scalebox{.6}{
\begin{tikzpicture}[default]
\diagram{-4}{4}{-.5}{4}{1}
\diagramannotatez
\diagramannotatex{-2,-1,1,2}
\diagramannotatey{1}
\draw[cred,ultra thick] plot[smooth,domain=-4:-0.5,samples=20] function{1/(x**2)};
\draw[cred,ultra thick] plot[smooth,domain=0.5:4,samples=20] function{1/(x**2)};
\end{tikzpicture}
}
\end{center}
\pause
As $x$ becomes close to $0$, $\frac{1}{x^2}$ becomes very large.
\pause
The values do not approach a number, so \alert{$\lim_{x\to 0} \frac{1}{x^2}$ does not exist!}
\pause\bigskip
Nevertheless, in this case, we write
\begin{talign}
\lim_{x\to 0} \frac{1}{x^2} = \infty
\end{talign}
to indicate that the values become larger and larger.
\vspace{1cm}
\end{frame}