\begin{frame}
\frametitle{Exponential Functions: Applications}
\begin{exampleblock}{}
We consider a population of bacteria:
\begin{itemize}
\item suppose the population doubles every hour
\item we write $p(t)$ for the population after $t$ hours
\item initial population is $p(0) = 1000$
\end{itemize}
\end{exampleblock}
\pause
We have:
\begin{talign}
&\mpause[1]{p(1) = 2\cdot p(0) = 2\cdot 1000}\\
&\mpause[2]{p(2) = 2\cdot p(1) = 2^2\cdot 1000}\\
&\mpause[3]{p(3) = 2\cdot p(2) = 2^3\cdot 1000}\\[-1ex]
&\mpause[4]{\hspace{2cm}\vdots}
\end{talign}
\pause[6]
Thus in general
\begin{talign}
p(t) = 1000\cdot 2^t
\end{talign}
\vspace{-2ex}\pause
\begin{exampleblock}{}
Under ideal conditions such rapid growth occurs in nature.
\end{exampleblock}
\end{frame}