\begin{frame}
\frametitle{Symmetry}
\begin{exampleblock}{}
Which of the following functions is even?
\begin{enumerate}
\item $f(x) = x^5 + x$
\item $g(x) = 1 - x^4$
\item $h(x) = 2x - x^2$
\end{enumerate}
\end{exampleblock}
\pause\smallskip
We have:
\begin{enumerate}
\pause
\item $f(-x) = \pause (-x)^5 + (-x) =\pause -x^5 - x = \pause -(x^5+x) = \pause-f(x)$\\[.5ex]
\pause Thus $f$ is odd.
\pause
\item $g(-x) = \pause 1 - (-x)^4 =\pause 1 - x^4 = \pause g(x)$\\[.5ex]
\pause Thus $g$ is even.
\pause
\item $h(-x) = \pause 2(-x) - (-x)^2 =\pause -2x - x^2$\\[.5ex]
\pause Thus $h$ is neither even nor odd.
\end{enumerate}
\pause\smallskip
\begin{exampleblock}{}
Note that:
\begin{itemize}
\item The sum of even functions is even (e.g. $1 + x^4$).
\item The sum of odd functions is odd (e.g. $x^5 + x$).
\end{itemize}
\end{exampleblock}
\end{frame}