
Automata Theory :: Complexity

Jörg Endrullis

Vrije Universiteit Amsterdam

Big O Notation

Let f ,g : N → R>0. Then

f ∈ O(g) ⇐⇒ ∃C > 0. ∃n0. f (n) ≤ C · g(n) for all n ≥ n0

na ∈ O(nb) for all 0 < a ≤ b

cana + ca−1na−1 + · · ·+ c0 ∈ O(na) for all a > 0
na ∈ O(bn) for all a > 0 and b > 1

loga n ∈ O(nb) for all a,b > 0
loga n ∈ O(logb n) for all a,b > 0

By definition loga an = n. This implies aloga n = n, and hence

aloga b · logb n =
(
aloga b)logb n

= blogb n = n

Hence loga b · logb n = loga n.

Time Complexity: P and NP

Time Complexity

Let f ,g : N → N.

A nondeterministic Turing machine M

runs in time f

if for every input w , every computation of M reaches a halting
state after at most f (|w |) steps.

The function f gives an upper bound on the number of
computation steps in terms of the length of the input word.

A Turing machine M has

time complexity O(g)

if there exists f ∈ O(g) such that M runs in time f .

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(nk) for some k .

NP is the class of languages accepted by nondeterministic
polynomial time Turing machines:

NP = {L(M) | M is nondeterministic polynomial time TM }

P is the class of languages accepted by deterministic
polynomial time Turing machines:

P = {L(M) | M is deterministic polynomial time TM }

Clearly P ⊆ NP, but it is unknown whether P = NP.

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
every instance has a finite set of possible solutions,

correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length ≤ k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Satisfiability in Propositional Logic

A formula of propositional logic consists of

true conjunction ∧ variables
false disjunction ∨ negation ¬

A formula of propositional logic φ is satisfiable if there exists
an assignment of true and false to the variables such that φ
evaluates to true.

Theorem
Satisfiability of formulas of propositional logic is in NP.

Proof.
We can construct a nondeterministic Turing machine that

guesses an assignment of true and false to the variables,

evaluates the formula (in polynomial time), and
accepts if the evaluation is true.

NP-completeness

NP-completeness

Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be decision problems (languages).

Then L1 is polynomial-time reducible to L2 if there exists a
polynomial-time computable function f : Σ∗1 → Σ∗2 such that:

x ∈ L1 ⇐⇒ f (x) ∈ L2

To decide if x ∈ L1, we can compute f (x) and check f (x) ∈ L2.

So the problem L1 is reduced to the problem L2.

Let f : Σ∗1 → Σ∗2 and g : Σ∗2 → Σ∗3 be polynomial-time reductions.
The composition g ◦ f : Σ∗1 → Σ∗3 is a polynomial-time reduction.

NP-completeness
A language L ∈ NP is NP-complete if every language in NP is
polynomial time reducible to L.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length ≤ k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

. . . and many more questions

Bounded Tiling Problem

Bounded Tiling Problem

Given a finite collection of types of 1× 1 tiles with a colour on
each side. (There are infinitely many tiles of each type.)

g
b

r
b

r
b

g
b

r
z

g
b

Bonded tiling problem: the input is n ∈ N, a finite collection of
types of tiles, the first row of n tiles.
Is it possible to tile an n × n field (with the given first row)?
When connecting tiles, the touching side must have the same
colour. Tiles must not be rotated.

Example n = 2:

g
b

r
b

r
b

g
b

first row incomplete tiling correct tiling

g
b

r
b

r
b

g
b

r
z

g
b

g
b

r
b

r
b

g
b

r
b

g
b

g
b

r
b

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem. continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)
For input word x = a1 · · · ak we choose n = 2p(k) + 1.
(Assume p(k) ≥ k , otherwise make it so.)

As first row we choose:
2

· · ·
2 q0,a1 a2

· · ·
ak 2

· · ·
2

p(k) p(k)

Tiles for building the first row (for every a ∈ Σ):
2 q0,a a

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for building the first row (for every a ∈ Σ):

2 q0,a a

Tiles simulating the computation of M (for every c ∈ Γ):
b

r,
R

q,a

r ,c

c

r,
R

for (r ,b,R) ∈ δ(q,a)

r ,c

r,
L

c

b

q,a

r,
L

for (r ,b,L) ∈ δ(q,a)

Tiles for leaving the tape unchanged (for every q ∈ F , c ∈ Γ):
q,c

q,c

c

c

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a1 · · · ak and with the indicated starting row:

n × n field can be tiled ⇐⇒ x ∈ L(M)

Every tiling simulates a computation of M on input x .

The computation takes at most p(k) steps.

So the computation fills only p(k) < n rows of the tiling.

Hence, the n × n tiling can only be completed using

q,c

q,c

which exists only for q ∈ F .

Tiling can be finished⇐⇒ M has an accepting computation for input x .

Example

Consider the TM M with Σ = {a,b}, Γ = Σ ∪ {2}, F = {q1} and

δ(q0,a) = {(q0,b,R)} δ(q0,b) = {(q1,b,L)}

Note that L(M) = L(a∗b(a + b)∗) = L((a + b)∗b(a + b)∗)

For input x , M takes at most |x | steps. So we take p(k) = k .

The tile types are:

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

for every c ∈ Γ .

continued on the next slide. . .

Example

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

Consider the input word aaa 6∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a a 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

a

a

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,a

a

q 0
, R

2

2

2

2

2

2

2

2

b

b

b

b

b

q 0
, R

q0,a

q0,2

2

q 0
, R

The tiling cannot be completed.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Satisfiability Problem

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.

Given
a set T of tile types,
a number n,
a first row of tiles t1 · · · tn.

We create a satisfiability problem as follows.

We introduce Boolean variables xrct for 1 ≤ r , c ≤ n and t ∈ T .
Intention: xrct = true ⇐⇒ tile of type t at row r and column c.

continued on the next slide. . .

Satisfiability Problem is NP-complete
Proof continued. . .
We define Φ to be the conjunction of the 4 formulas:

1. Fist row is t1 · · · tn: ∧n
c=1 x1ctk

2. At every position at most one tile type:∧n
r=1

∧n
c=1

∧
t 6=t ′ ¬(xrct ∧ xrct ′)

3. Neighbouring tiles must match (horizontal neighbours):∧n
r=1

∧n−1
c=1

∨
tt ′ matches(xrct ∧ xr(c+1)t ′)

4. Neighbouring tiles must match (vertical neighbours):∧n−1
r=1

∧n
c=1

∨
t ′
t matches(xrct ∧ x(r+1)ct ′)

Size of the formula is polynomial in n.
There exists an n × n tiling with first row t1 · · · tn⇐⇒ the propositional formula Φ is satisfiable.
Thus we have a polynomial-time reduction.

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

g
b

r
b

r
b

g
b

r
z

g
b

t1 t2 t3
First row:

g
b

r
b

r
b

g
b

t1 t2

Then Φ is the conjunction of:
1. x11t1 ∧ x12t2

2. ¬(x11t1 ∧x11t2)∧¬(x12t1 ∧x12t2)∧¬(x21t1 ∧x21t2)∧¬(x22t1 ∧x22t2)∧
¬(x11t1 ∧x11t3)∧¬(x12t1 ∧x12t3)∧¬(x21t1 ∧x21t3)∧¬(x22t1 ∧x22t3)∧

¬(x11t2 ∧x11t3)∧¬(x12t2 ∧x12t3)∧¬(x21t2 ∧x21t3)∧¬(x22t2 ∧x22t3)

3.
(
(x11t1 ∧ x12t1)∨ (x11t1 ∧ x12t2)∨ (x11t1 ∧ x12t3)∨

(x11t2 ∧ x12t1)∨ (x11t2 ∧ x12t2)∨ (x11t2 ∧ x12t3)
)
∧(

(x21t1 ∧ x22t1)∨ (x21t1 ∧ x22t2)∨ (x21t1 ∧ x22t3)∨

(x21t2 ∧ x22t1)∨ (x21t2 ∧ x22t2)∨ (x21t2 ∧ x22t3)
)

4.
(
(x11t1 ∧ x21t2)∨ (x11t1 ∧ x21t3)∨ (x11t2 ∧ x21t1)∨ (x11t3 ∧ x21t1)

)
∧(

(x12t1 ∧ x22t2)∨ (x12t1 ∧ x22t3)∨ (x12t2 ∧ x22t1)∨ (x12t3 ∧ x22t1)
)

P = NP?

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L ′ ∈ NP.

As L is NP-complete, there is a polynomial-time reduction f with

x ∈ L ′ ⇐⇒ f (x) ∈ L

Since L ∈ P, we can compute f (x) ∈ L in polynomial time.

Thus x ∈ L ′ can be decided in polynomial time.

Hence L ′ ∈ P.

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

co-NP

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

Theorem
If an NP-complete problem is in co-NP, then NP = co-NP.

Note that there are problems that are both in NP ∩ co-NP.

Space Complexity

Space Complexity

Let f ,g : N → N.

A nondeterministic Turing machine M

runs in space f

if for every input w , every computation of M visits at most f (|w |)
positions on the tape.

The function f gives an upper bound on the number of visited
cells on the tape in terms of the length of the input word.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = {L(M) | M nondeterministic polynomial space TM }

PSpace = {L(M) | M deterministic polynomial space TM }

P ⊆ PSpace NP ⊆ NPSpace

Theorem of Savitch

PSpace = NPSpace

Actually, the theorem says something more general:

If L is accepted by a nondeterministic TM in f (n) space,
then L is accepted by a deterministic TM in f (n)2 space.

PSpace-completeness

P co−NPNP

PSpace

It is unknown whether these inclusions are strict.

A language L ∈ PSpace is PSpace-complete if every language
L ′ ∈ PSpace is polynomial-time reducible to L.

L(r) = Σ∗ ? for regular expression r is PSpace-complete.

The Classes EXP, NEXP and EXPSpace

The Classes EXP and NEXP

A nondeterministic Turing machine M is
exponential time if M runs in time 2p(|x |) and
exponential space if M runs in space 2p(|x |)

for some polynomial p.

NEXP = {L(M) | M nondeterm. exponential time TM }

EXP = {L(M) | M deterministic exponential time TM }

NEXPSpace = {L(M) | M nondeterm. exponential space TM }

EXPSpace = {L(M) | M deterministic exponential space TM }

P ⊆ NP ⊆ PSpace ⊆ EXP ⊆ NEXP ⊆ EXPSpace
It is unknown whether these inclusions are strict. We know

P 6= EXP NP 6= NEXP PSpace 6= EXPSpace = NEXPSpace

PSpace ⊆ EXP holds since a polynomial-space TM can at
most take an exponential number of configurations.

Complexity Hierarchy

P co−NPNP

PSpace

EXP

EXPSpace

co−NEXPNEXP

The following inclusions are known to be strict:

P 6= EXP NP 6= NEXP PSpace 6= EXPSpace

	pbs@ARFix@1:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@10:
	pbs@ARFix@14:
	pbs@ARFix@20:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@28:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@37:
	pbs@ARFix@45:
	pbs@ARFix@48:
	pbs@ARFix@52:
	pbs@ARFix@58:
	pbs@ARFix@62:
	pbs@ARFix@68:
	pbs@ARFix@76:
	pbs@ARFix@77:
	pbs@ARFix@83:
	pbs@ARFix@87:
	pbs@ARFix@92:
	pbs@ARFix@93:
	pbs@ARFix@100:
	pbs@ARFix@101:
	pbs@ARFix@107:
	pbs@ARFix@108:
	pbs@ARFix@110:
	pbs@ARFix@115:
	pbs@ARFix@117:
	pbs@ARFix@118:
	pbs@ARFix@121:
	pbs@ARFix@122:

