
Automata Theory :: Complexity

Jörg Endrullis

Vrije Universiteit Amsterdam

Big O Notation

Let f ,g : N → R>0. Then

f ∈ O(g) ⇐⇒ ∃C > 0. ∃n0. f (n) ≤ C · g(n) for all n ≥ n0

na ∈ O(nb) for all 0 < a ≤ b

cana + ca−1na−1 + · · ·+ c0 ∈ O(na) for all a > 0
na ∈ O(bn) for all a > 0 and b > 1

loga n ∈ O(nb) for all a,b > 0
loga n ∈ O(logb n) for all a,b > 0

By definition loga an = n. This implies aloga n = n, and hence

aloga b · logb n =
(
aloga b)logb n

= blogb n = n

Hence loga b · logb n = loga n.

Big O Notation

Let f ,g : N → R>0. Then

f ∈ O(g) ⇐⇒ ∃C > 0. ∃n0. f (n) ≤ C · g(n) for all n ≥ n0

na ∈ O(nb) for all 0 < a ≤ b

cana + ca−1na−1 + · · ·+ c0 ∈ O(na) for all a > 0
na ∈ O(bn) for all a > 0 and b > 1

loga n ∈ O(nb) for all a,b > 0
loga n ∈ O(logb n) for all a,b > 0

By definition loga an = n. This implies aloga n = n, and hence

aloga b · logb n =
(
aloga b)logb n

= blogb n = n

Hence loga b · logb n = loga n.

Big O Notation

Let f ,g : N → R>0. Then

f ∈ O(g) ⇐⇒ ∃C > 0. ∃n0. f (n) ≤ C · g(n) for all n ≥ n0

na ∈ O(nb) for all 0 < a ≤ b

cana + ca−1na−1 + · · ·+ c0 ∈ O(na) for all a > 0
na ∈ O(bn) for all a > 0 and b > 1

loga n ∈ O(nb) for all a,b > 0
loga n ∈ O(logb n) for all a,b > 0

By definition loga an = n.

This implies aloga n = n, and hence

aloga b · logb n =
(
aloga b)logb n

= blogb n = n

Hence loga b · logb n = loga n.

Big O Notation

Let f ,g : N → R>0. Then

f ∈ O(g) ⇐⇒ ∃C > 0. ∃n0. f (n) ≤ C · g(n) for all n ≥ n0

na ∈ O(nb) for all 0 < a ≤ b

cana + ca−1na−1 + · · ·+ c0 ∈ O(na) for all a > 0
na ∈ O(bn) for all a > 0 and b > 1

loga n ∈ O(nb) for all a,b > 0
loga n ∈ O(logb n) for all a,b > 0

By definition loga an = n. This implies aloga n = n

, and hence

aloga b · logb n =
(
aloga b)logb n

= blogb n = n

Hence loga b · logb n = loga n.

Big O Notation

Let f ,g : N → R>0. Then

f ∈ O(g) ⇐⇒ ∃C > 0. ∃n0. f (n) ≤ C · g(n) for all n ≥ n0

na ∈ O(nb) for all 0 < a ≤ b

cana + ca−1na−1 + · · ·+ c0 ∈ O(na) for all a > 0
na ∈ O(bn) for all a > 0 and b > 1

loga n ∈ O(nb) for all a,b > 0
loga n ∈ O(logb n) for all a,b > 0

By definition loga an = n. This implies aloga n = n, and hence

aloga b · logb n =
(
aloga b)logb n

= blogb n = n

Hence loga b · logb n = loga n.

Time Complexity: P and NP

Time Complexity

Let f ,g : N → N.

A nondeterministic Turing machine M

runs in time f

if for every input w , every computation of M reaches a halting
state after at most f (|w |) steps.

The function f gives an upper bound on the number of
computation steps in terms of the length of the input word.

A Turing machine M has

time complexity O(g)

if there exists f ∈ O(g) such that M runs in time f .

Time Complexity

Let f ,g : N → N.

A nondeterministic Turing machine M

runs in time f

if for every input w , every computation of M reaches a halting
state after at most f (|w |) steps.

The function f gives an upper bound on the number of
computation steps in terms of the length of the input word.

A Turing machine M has

time complexity O(g)

if there exists f ∈ O(g) such that M runs in time f .

Time Complexity

Let f ,g : N → N.

A nondeterministic Turing machine M

runs in time f

if for every input w , every computation of M reaches a halting
state after at most f (|w |) steps.

The function f gives an upper bound on the number of
computation steps in terms of the length of the input word.

A Turing machine M has

time complexity O(g)

if there exists f ∈ O(g) such that M runs in time f .

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(nk) for some k .

NP is the class of languages accepted by nondeterministic
polynomial time Turing machines:

NP = {L(M) | M is nondeterministic polynomial time TM }

P is the class of languages accepted by deterministic
polynomial time Turing machines:

P = {L(M) | M is deterministic polynomial time TM }

Clearly P ⊆ NP, but it is unknown whether P = NP.

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(nk) for some k .

NP is the class of languages accepted by nondeterministic
polynomial time Turing machines:

NP = {L(M) | M is nondeterministic polynomial time TM }

P is the class of languages accepted by deterministic
polynomial time Turing machines:

P = {L(M) | M is deterministic polynomial time TM }

Clearly P ⊆ NP, but it is unknown whether P = NP.

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(nk) for some k .

NP is the class of languages accepted by nondeterministic
polynomial time Turing machines:

NP = {L(M) | M is nondeterministic polynomial time TM }

P is the class of languages accepted by deterministic
polynomial time Turing machines:

P = {L(M) | M is deterministic polynomial time TM }

Clearly P ⊆ NP, but it is unknown whether P = NP.

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(nk) for some k .

NP is the class of languages accepted by nondeterministic
polynomial time Turing machines:

NP = {L(M) | M is nondeterministic polynomial time TM }

P is the class of languages accepted by deterministic
polynomial time Turing machines:

P = {L(M) | M is deterministic polynomial time TM }

Clearly P ⊆ NP, but it is unknown whether P = NP.

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
every instance has a finite set of possible solutions,

correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length ≤ k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
every instance has a finite set of possible solutions,

correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length ≤ k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
every instance has a finite set of possible solutions,

correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length ≤ k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
every instance has a finite set of possible solutions,

correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length ≤ k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
every instance has a finite set of possible solutions,

correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length ≤ k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
every instance has a finite set of possible solutions,

correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length ≤ k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Satisfiability in Propositional Logic

A formula of propositional logic consists of

true conjunction ∧ variables
false disjunction ∨ negation ¬

A formula of propositional logic φ is satisfiable if there exists
an assignment of true and false to the variables such that φ
evaluates to true.

Theorem
Satisfiability of formulas of propositional logic is in NP.

Proof.
We can construct a nondeterministic Turing machine that

guesses an assignment of true and false to the variables,

evaluates the formula (in polynomial time), and
accepts if the evaluation is true.

Satisfiability in Propositional Logic

A formula of propositional logic consists of

true conjunction ∧ variables
false disjunction ∨ negation ¬

A formula of propositional logic φ is satisfiable if there exists
an assignment of true and false to the variables such that φ
evaluates to true.

Theorem
Satisfiability of formulas of propositional logic is in NP.

Proof.
We can construct a nondeterministic Turing machine that

guesses an assignment of true and false to the variables,

evaluates the formula (in polynomial time), and
accepts if the evaluation is true.

Satisfiability in Propositional Logic

A formula of propositional logic consists of

true conjunction ∧ variables
false disjunction ∨ negation ¬

A formula of propositional logic φ is satisfiable if there exists
an assignment of true and false to the variables such that φ
evaluates to true.

Theorem
Satisfiability of formulas of propositional logic is in NP.

Proof.
We can construct a nondeterministic Turing machine that

guesses an assignment of true and false to the variables,

evaluates the formula (in polynomial time), and
accepts if the evaluation is true.

NP-completeness

NP-completeness

Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be decision problems (languages).

Then L1 is polynomial-time reducible to L2 if there exists a
polynomial-time computable function f : Σ∗1 → Σ∗2 such that:

x ∈ L1 ⇐⇒ f (x) ∈ L2

To decide if x ∈ L1, we can compute f (x) and check f (x) ∈ L2.

So the problem L1 is reduced to the problem L2.

Let f : Σ∗1 → Σ∗2 and g : Σ∗2 → Σ∗3 be polynomial-time reductions.
The composition g ◦ f : Σ∗1 → Σ∗3 is a polynomial-time reduction.

NP-completeness
A language L ∈ NP is NP-complete if every language in NP is
polynomial time reducible to L.

NP-completeness

Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be decision problems (languages).

Then L1 is polynomial-time reducible to L2 if there exists a
polynomial-time computable function f : Σ∗1 → Σ∗2 such that:

x ∈ L1 ⇐⇒ f (x) ∈ L2

To decide if x ∈ L1, we can compute f (x) and check f (x) ∈ L2.

So the problem L1 is reduced to the problem L2.

Let f : Σ∗1 → Σ∗2 and g : Σ∗2 → Σ∗3 be polynomial-time reductions.
The composition g ◦ f : Σ∗1 → Σ∗3 is a polynomial-time reduction.

NP-completeness
A language L ∈ NP is NP-complete if every language in NP is
polynomial time reducible to L.

NP-completeness

Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be decision problems (languages).

Then L1 is polynomial-time reducible to L2 if there exists a
polynomial-time computable function f : Σ∗1 → Σ∗2 such that:

x ∈ L1 ⇐⇒ f (x) ∈ L2

To decide if x ∈ L1, we can compute f (x) and check f (x) ∈ L2.

So the problem L1 is reduced to the problem L2.

Let f : Σ∗1 → Σ∗2 and g : Σ∗2 → Σ∗3 be polynomial-time reductions.
The composition g ◦ f : Σ∗1 → Σ∗3 is a polynomial-time reduction.

NP-completeness
A language L ∈ NP is NP-complete if every language in NP is
polynomial time reducible to L.

NP-completeness

Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be decision problems (languages).

Then L1 is polynomial-time reducible to L2 if there exists a
polynomial-time computable function f : Σ∗1 → Σ∗2 such that:

x ∈ L1 ⇐⇒ f (x) ∈ L2

To decide if x ∈ L1, we can compute f (x) and check f (x) ∈ L2.

So the problem L1 is reduced to the problem L2.

Let f : Σ∗1 → Σ∗2 and g : Σ∗2 → Σ∗3 be polynomial-time reductions.
The composition g ◦ f : Σ∗1 → Σ∗3 is a polynomial-time reduction.

NP-completeness
A language L ∈ NP is NP-complete if every language in NP is
polynomial time reducible to L.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length ≤ k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

. . . and many more questions

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length ≤ k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

. . . and many more questions

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length ≤ k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

. . . and many more questions

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length ≤ k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

. . . and many more questions

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length ≤ k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

. . . and many more questions

Bounded Tiling Problem

Bounded Tiling Problem

Given a finite collection of types of 1× 1 tiles with a colour on
each side. (There are infinitely many tiles of each type.)

g
b

r
b

r
b

g
b

r
z

g
b

Bonded tiling problem: the input is n ∈ N, a finite collection of
types of tiles, the first row of n tiles.
Is it possible to tile an n × n field (with the given first row)?
When connecting tiles, the touching side must have the same
colour. Tiles must not be rotated.

Example n = 2:

g
b

r
b

r
b

g
b

first row incomplete tiling correct tiling

g
b

r
b

r
b

g
b

r
z

g
b

g
b

r
b

r
b

g
b

r
b

g
b

g
b

r
b

Bounded Tiling Problem

Given a finite collection of types of 1× 1 tiles with a colour on
each side. (There are infinitely many tiles of each type.)

g
b

r
b

r
b

g
b

r
z

g
b

Bonded tiling problem: the input is n ∈ N, a finite collection of
types of tiles, the first row of n tiles.
Is it possible to tile an n × n field (with the given first row)?
When connecting tiles, the touching side must have the same
colour. Tiles must not be rotated.

Example n = 2:

g
b

r
b

r
b

g
b

first row incomplete tiling correct tiling

g
b

r
b

r
b

g
b

r
z

g
b

g
b

r
b

r
b

g
b

r
b

g
b

g
b

r
b

Bounded Tiling Problem

Given a finite collection of types of 1× 1 tiles with a colour on
each side. (There are infinitely many tiles of each type.)

g
b

r
b

r
b

g
b

r
z

g
b

Bonded tiling problem: the input is n ∈ N, a finite collection of
types of tiles, the first row of n tiles.
Is it possible to tile an n × n field (with the given first row)?
When connecting tiles, the touching side must have the same
colour. Tiles must not be rotated.

Example n = 2:

g
b

r
b

r
b

g
b

first row incomplete tiling correct tiling

g
b

r
b

r
b

g
b

r
z

g
b

g
b

r
b

r
b

g
b

r
b

g
b

g
b

r
b

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem. continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem. continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem. continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem. continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.

Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem. continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem. continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem.

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
guesses an n × n tiling, and

afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x ∈ L(M) ? to the
bounded tiling problem. continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)
For input word x = a1 · · · ak we choose n = 2p(k) + 1.
(Assume p(k) ≥ k , otherwise make it so.)

As first row we choose:
2

· · ·
2 q0,a1 a2

· · ·
ak 2

· · ·
2

p(k) p(k)

Tiles for building the first row (for every a ∈ Σ):
2 q0,a a

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)
For input word x = a1 · · · ak we choose n = 2p(k) + 1.
(Assume p(k) ≥ k , otherwise make it so.)

As first row we choose:
2

· · ·
2 q0,a1 a2

· · ·
ak 2

· · ·
2

p(k) p(k)

Tiles for building the first row (for every a ∈ Σ):
2 q0,a a

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)
For input word x = a1 · · · ak we choose n = 2p(k) + 1.
(Assume p(k) ≥ k , otherwise make it so.)

As first row we choose:
2

· · ·
2 q0,a1 a2

· · ·
ak 2

· · ·
2

p(k) p(k)

Tiles for building the first row (for every a ∈ Σ):
2 q0,a a

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for building the first row (for every a ∈ Σ):

2 q0,a a

Tiles simulating the computation of M (for every c ∈ Γ):
b

r,
R

q,a

r ,c

c

r,
R

for (r ,b,R) ∈ δ(q,a)

r ,c

r,
L

c

b

q,a

r,
L

for (r ,b,L) ∈ δ(q,a)

Tiles for leaving the tape unchanged (for every q ∈ F , c ∈ Γ):
q,c

q,c

c

c

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for building the first row (for every a ∈ Σ):

2 q0,a a

Tiles simulating the computation of M (for every c ∈ Γ):
b

r,
R

q,a

r ,c

c

r,
R

for (r ,b,R) ∈ δ(q,a)

r ,c

r,
L

c

b

q,a

r,
L

for (r ,b,L) ∈ δ(q,a)

Tiles for leaving the tape unchanged (for every q ∈ F , c ∈ Γ):
q,c

q,c

c

c

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for building the first row (for every a ∈ Σ):

2 q0,a a

Tiles simulating the computation of M (for every c ∈ Γ):
b

r,
R

q,a

r ,c

c

r,
R

for (r ,b,R) ∈ δ(q,a)

r ,c

r,
L

c

b

q,a

r,
L

for (r ,b,L) ∈ δ(q,a)

Tiles for leaving the tape unchanged (for every q ∈ F , c ∈ Γ):
q,c

q,c

c

c

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for building the first row (for every a ∈ Σ):

2 q0,a a

Tiles simulating the computation of M (for every c ∈ Γ):
b

r,
R

q,a

r ,c

c

r,
R

for (r ,b,R) ∈ δ(q,a)

r ,c

r,
L

c

b

q,a

r,
L

for (r ,b,L) ∈ δ(q,a)

Tiles for leaving the tape unchanged (for every q ∈ F , c ∈ Γ):
q,c

q,c

c

c

continued on the next slide. . .

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a1 · · · ak and with the indicated starting row:

n × n field can be tiled ⇐⇒ x ∈ L(M)

Every tiling simulates a computation of M on input x .

The computation takes at most p(k) steps.

So the computation fills only p(k) < n rows of the tiling.

Hence, the n × n tiling can only be completed using

q,c

q,c

which exists only for q ∈ F .

Tiling can be finished⇐⇒ M has an accepting computation for input x .

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a1 · · · ak and with the indicated starting row:

n × n field can be tiled ⇐⇒ x ∈ L(M)

Every tiling simulates a computation of M on input x .

The computation takes at most p(k) steps.

So the computation fills only p(k) < n rows of the tiling.

Hence, the n × n tiling can only be completed using

q,c

q,c

which exists only for q ∈ F .

Tiling can be finished⇐⇒ M has an accepting computation for input x .

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a1 · · · ak and with the indicated starting row:

n × n field can be tiled ⇐⇒ x ∈ L(M)

Every tiling simulates a computation of M on input x .

The computation takes at most p(k) steps.

So the computation fills only p(k) < n rows of the tiling.

Hence, the n × n tiling can only be completed using

q,c

q,c

which exists only for q ∈ F .

Tiling can be finished⇐⇒ M has an accepting computation for input x .

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a1 · · · ak and with the indicated starting row:

n × n field can be tiled ⇐⇒ x ∈ L(M)

Every tiling simulates a computation of M on input x .

The computation takes at most p(k) steps.

So the computation fills only p(k) < n rows of the tiling.

Hence, the n × n tiling can only be completed using

q,c

q,c

which exists only for q ∈ F .

Tiling can be finished⇐⇒ M has an accepting computation for input x .

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a1 · · · ak and with the indicated starting row:

n × n field can be tiled ⇐⇒ x ∈ L(M)

Every tiling simulates a computation of M on input x .

The computation takes at most p(k) steps.

So the computation fills only p(k) < n rows of the tiling.

Hence, the n × n tiling can only be completed using

q,c

q,c

which exists only for q ∈ F .

Tiling can be finished⇐⇒ M has an accepting computation for input x .

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a1 · · · ak and with the indicated starting row:

n × n field can be tiled ⇐⇒ x ∈ L(M)

Every tiling simulates a computation of M on input x .

The computation takes at most p(k) steps.

So the computation fills only p(k) < n rows of the tiling.

Hence, the n × n tiling can only be completed using

q,c

q,c

which exists only for q ∈ F .

Tiling can be finished⇐⇒ M has an accepting computation for input x .

Example

Consider the TM M with Σ = {a,b}, Γ = Σ ∪ {2}, F = {q1} and

δ(q0,a) = {(q0,b,R)} δ(q0,b) = {(q1,b,L)}

Note that L(M) = L(a∗b(a + b)∗) = L((a + b)∗b(a + b)∗)

For input x , M takes at most |x | steps. So we take p(k) = k .

The tile types are:

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

for every c ∈ Γ .

continued on the next slide. . .

Example

Consider the TM M with Σ = {a,b}, Γ = Σ ∪ {2}, F = {q1} and

δ(q0,a) = {(q0,b,R)} δ(q0,b) = {(q1,b,L)}

Note that L(M) = L(a∗b(a + b)∗) = L((a + b)∗b(a + b)∗)

For input x , M takes at most |x | steps. So we take p(k) = k .

The tile types are:

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

for every c ∈ Γ .

continued on the next slide. . .

Example

Consider the TM M with Σ = {a,b}, Γ = Σ ∪ {2}, F = {q1} and

δ(q0,a) = {(q0,b,R)} δ(q0,b) = {(q1,b,L)}

Note that L(M) = L(a∗b(a + b)∗) = L((a + b)∗b(a + b)∗)

For input x , M takes at most |x | steps. So we take p(k) = k .

The tile types are:

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

for every c ∈ Γ .

continued on the next slide. . .

Example

Consider the TM M with Σ = {a,b}, Γ = Σ ∪ {2}, F = {q1} and

δ(q0,a) = {(q0,b,R)} δ(q0,b) = {(q1,b,L)}

Note that L(M) = L(a∗b(a + b)∗) = L((a + b)∗b(a + b)∗)

For input x , M takes at most |x | steps. So we take p(k) = k .

The tile types are:

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

for every c ∈ Γ .

continued on the next slide. . .

Example

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

Consider the input word aaa 6∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a a 2

2

2

2

2

2

2

b

q 0
, R

q0,a

q0,a

a

q 0
, R

a

a

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,a

a

q 0
, R

2

2

2

2

2

2

2

2

b

b

b

b

b

q 0
, R

q0,a

q0,2

2

q 0
, R

The tiling cannot be completed.

Example

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

Consider the input word aaa 6∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a a 2

2

2

2

2

2

2

b

q 0
, R

q0,a

q0,a

a

q 0
, R

a

a

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,a

a

q 0
, R

2

2

2

2

2

2

2

2

b

b

b

b

b

q 0
, R

q0,a

q0,2

2

q 0
, R

The tiling cannot be completed.

Example

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

Consider the input word aaa 6∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a a 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

a

a

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,a

a

q 0
, R

2

2

2

2

2

2

2

2

b

b

b

b

b

q 0
, R

q0,a

q0,2

2

q 0
, R

The tiling cannot be completed.

Example

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

Consider the input word aaa 6∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a a 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

a

a

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,a

a

q 0
, R

2

2

2

2

2

2

2

2

b

b

b

b

b

q 0
, R

q0,a

q0,2

2

q 0
, R

The tiling cannot be completed.

Example

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

Consider the input word aaa 6∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a a 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

a

a

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,a

a

q 0
, R

2

2

2

2

2

2

2

2

b

b

b

b

b

q 0
, R

q0,a

q0,2

2

q 0
, R

The tiling cannot be completed.

Example

q0,a q0,b a b 2 q1,c

q1,c

c

c

b

q 0
, R

q0,a

q0,c

c

q 0
, R

q1,c

q 1
, L

c

b

q0,b

q 1
, L

Consider the input word aaa 6∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a a 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

a

a

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,a

a

q 0
, R

2

2

2

2

2

2

2

2

b

b

b

b

b

q 0
, R

q0,a

q0,2

2

q 0
, R

The tiling cannot be completed.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b

q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b

q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Example continued

Consider the input word aab ∈ L(M). Then n = 2p(3) + 1 = 7.

2 2 2 q0,a a b 2

2

2

2

2

2

2

b
q 0
, R

q0,a

q0,a

a

q 0
, R

b

b

2

2

2

2

2

2

2

2

b

b

b

q 0
, R

q0,a

q0,b

b

q 0
, R

2

2

2

2

2

2

2

2

b

b

q1,b

q 1
, L

b

b

q0,b

q 1
, L

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

2

2

2

2

2

2

b

b

q1,b

q1,b

b

b

2

2

Complete tiling of the 7× 7 field.

Satisfiability Problem

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.

Given
a set T of tile types,
a number n,
a first row of tiles t1 · · · tn.

We create a satisfiability problem as follows.

We introduce Boolean variables xrct for 1 ≤ r , c ≤ n and t ∈ T .
Intention: xrct = true ⇐⇒ tile of type t at row r and column c.

continued on the next slide. . .

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.

Given
a set T of tile types,
a number n,
a first row of tiles t1 · · · tn.

We create a satisfiability problem as follows.

We introduce Boolean variables xrct for 1 ≤ r , c ≤ n and t ∈ T .
Intention: xrct = true ⇐⇒ tile of type t at row r and column c.

continued on the next slide. . .

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.

Given
a set T of tile types,
a number n,
a first row of tiles t1 · · · tn.

We create a satisfiability problem as follows.

We introduce Boolean variables xrct for 1 ≤ r , c ≤ n and t ∈ T .
Intention: xrct = true ⇐⇒ tile of type t at row r and column c.

continued on the next slide. . .

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.

Given
a set T of tile types,
a number n,
a first row of tiles t1 · · · tn.

We create a satisfiability problem as follows.

We introduce Boolean variables xrct for 1 ≤ r , c ≤ n and t ∈ T .
Intention: xrct = true ⇐⇒ tile of type t at row r and column c.

continued on the next slide. . .

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.

Given
a set T of tile types,
a number n,
a first row of tiles t1 · · · tn.

We create a satisfiability problem as follows.

We introduce Boolean variables xrct for 1 ≤ r , c ≤ n and t ∈ T .
Intention: xrct = true ⇐⇒ tile of type t at row r and column c.

continued on the next slide. . .

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.

Given
a set T of tile types,
a number n,
a first row of tiles t1 · · · tn.

We create a satisfiability problem as follows.

We introduce Boolean variables xrct for 1 ≤ r , c ≤ n and t ∈ T .
Intention: xrct = true ⇐⇒ tile of type t at row r and column c.

continued on the next slide. . .

Satisfiability Problem is NP-complete
Proof continued. . .
We define Φ to be the conjunction of the 4 formulas:

1. Fist row is t1 · · · tn: ∧n
c=1 x1ctk

2. At every position at most one tile type:∧n
r=1

∧n
c=1

∧
t 6=t ′ ¬(xrct ∧ xrct ′)

3. Neighbouring tiles must match (horizontal neighbours):∧n
r=1

∧n−1
c=1

∨
tt ′ matches(xrct ∧ xr(c+1)t ′)

4. Neighbouring tiles must match (vertical neighbours):∧n−1
r=1

∧n
c=1

∨
t ′
t matches(xrct ∧ x(r+1)ct ′)

Size of the formula is polynomial in n.
There exists an n × n tiling with first row t1 · · · tn⇐⇒ the propositional formula Φ is satisfiable.
Thus we have a polynomial-time reduction.

Satisfiability Problem is NP-complete
Proof continued. . .
We define Φ to be the conjunction of the 4 formulas:

1. Fist row is t1 · · · tn: ∧n
c=1 x1ctk

2. At every position at most one tile type:∧n
r=1

∧n
c=1

∧
t 6=t ′ ¬(xrct ∧ xrct ′)

3. Neighbouring tiles must match (horizontal neighbours):∧n
r=1

∧n−1
c=1

∨
tt ′ matches(xrct ∧ xr(c+1)t ′)

4. Neighbouring tiles must match (vertical neighbours):∧n−1
r=1

∧n
c=1

∨
t ′
t matches(xrct ∧ x(r+1)ct ′)

Size of the formula is polynomial in n.

There exists an n × n tiling with first row t1 · · · tn⇐⇒ the propositional formula Φ is satisfiable.
Thus we have a polynomial-time reduction.

Satisfiability Problem is NP-complete
Proof continued. . .
We define Φ to be the conjunction of the 4 formulas:

1. Fist row is t1 · · · tn: ∧n
c=1 x1ctk

2. At every position at most one tile type:∧n
r=1

∧n
c=1

∧
t 6=t ′ ¬(xrct ∧ xrct ′)

3. Neighbouring tiles must match (horizontal neighbours):∧n
r=1

∧n−1
c=1

∨
tt ′ matches(xrct ∧ xr(c+1)t ′)

4. Neighbouring tiles must match (vertical neighbours):∧n−1
r=1

∧n
c=1

∨
t ′
t matches(xrct ∧ x(r+1)ct ′)

Size of the formula is polynomial in n.
There exists an n × n tiling with first row t1 · · · tn⇐⇒ the propositional formula Φ is satisfiable.

Thus we have a polynomial-time reduction.

Satisfiability Problem is NP-complete
Proof continued. . .
We define Φ to be the conjunction of the 4 formulas:

1. Fist row is t1 · · · tn: ∧n
c=1 x1ctk

2. At every position at most one tile type:∧n
r=1

∧n
c=1

∧
t 6=t ′ ¬(xrct ∧ xrct ′)

3. Neighbouring tiles must match (horizontal neighbours):∧n
r=1

∧n−1
c=1

∨
tt ′ matches(xrct ∧ xr(c+1)t ′)

4. Neighbouring tiles must match (vertical neighbours):∧n−1
r=1

∧n
c=1

∨
t ′
t matches(xrct ∧ x(r+1)ct ′)

Size of the formula is polynomial in n.
There exists an n × n tiling with first row t1 · · · tn⇐⇒ the propositional formula Φ is satisfiable.
Thus we have a polynomial-time reduction.

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

g
b

r
b

r
b

g
b

r
z

g
b

t1 t2 t3
First row:

g
b

r
b

r
b

g
b

t1 t2

Then Φ is the conjunction of:
1. x11t1 ∧ x12t2

2. ¬(x11t1 ∧x11t2)∧¬(x12t1 ∧x12t2)∧¬(x21t1 ∧x21t2)∧¬(x22t1 ∧x22t2)∧
¬(x11t1 ∧x11t3)∧¬(x12t1 ∧x12t3)∧¬(x21t1 ∧x21t3)∧¬(x22t1 ∧x22t3)∧

¬(x11t2 ∧x11t3)∧¬(x12t2 ∧x12t3)∧¬(x21t2 ∧x21t3)∧¬(x22t2 ∧x22t3)

3.
(
(x11t1 ∧ x12t1)∨ (x11t1 ∧ x12t2)∨ (x11t1 ∧ x12t3)∨

(x11t2 ∧ x12t1)∨ (x11t2 ∧ x12t2)∨ (x11t2 ∧ x12t3)
)
∧(

(x21t1 ∧ x22t1)∨ (x21t1 ∧ x22t2)∨ (x21t1 ∧ x22t3)∨

(x21t2 ∧ x22t1)∨ (x21t2 ∧ x22t2)∨ (x21t2 ∧ x22t3)
)

4.
(
(x11t1 ∧ x21t2)∨ (x11t1 ∧ x21t3)∨ (x11t2 ∧ x21t1)∨ (x11t3 ∧ x21t1)

)
∧(

(x12t1 ∧ x22t2)∨ (x12t1 ∧ x22t3)∨ (x12t2 ∧ x22t1)∨ (x12t3 ∧ x22t1)
)

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

g
b

r
b

r
b

g
b

r
z

g
b

t1 t2 t3
First row:

g
b

r
b

r
b

g
b

t1 t2

Then Φ is the conjunction of:
1. x11t1 ∧ x12t2

2. ¬(x11t1 ∧x11t2)∧¬(x12t1 ∧x12t2)∧¬(x21t1 ∧x21t2)∧¬(x22t1 ∧x22t2)∧
¬(x11t1 ∧x11t3)∧¬(x12t1 ∧x12t3)∧¬(x21t1 ∧x21t3)∧¬(x22t1 ∧x22t3)∧

¬(x11t2 ∧x11t3)∧¬(x12t2 ∧x12t3)∧¬(x21t2 ∧x21t3)∧¬(x22t2 ∧x22t3)

3.
(
(x11t1 ∧ x12t1)∨ (x11t1 ∧ x12t2)∨ (x11t1 ∧ x12t3)∨

(x11t2 ∧ x12t1)∨ (x11t2 ∧ x12t2)∨ (x11t2 ∧ x12t3)
)
∧(

(x21t1 ∧ x22t1)∨ (x21t1 ∧ x22t2)∨ (x21t1 ∧ x22t3)∨

(x21t2 ∧ x22t1)∨ (x21t2 ∧ x22t2)∨ (x21t2 ∧ x22t3)
)

4.
(
(x11t1 ∧ x21t2)∨ (x11t1 ∧ x21t3)∨ (x11t2 ∧ x21t1)∨ (x11t3 ∧ x21t1)

)
∧(

(x12t1 ∧ x22t2)∨ (x12t1 ∧ x22t3)∨ (x12t2 ∧ x22t1)∨ (x12t3 ∧ x22t1)
)

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

g
b

r
b

r
b

g
b

r
z

g
b

t1 t2 t3
First row:

g
b

r
b

r
b

g
b

t1 t2

Then Φ is the conjunction of:
1. x11t1 ∧ x12t2

2. ¬(x11t1 ∧x11t2)∧¬(x12t1 ∧x12t2)∧¬(x21t1 ∧x21t2)∧¬(x22t1 ∧x22t2)∧
¬(x11t1 ∧x11t3)∧¬(x12t1 ∧x12t3)∧¬(x21t1 ∧x21t3)∧¬(x22t1 ∧x22t3)∧

¬(x11t2 ∧x11t3)∧¬(x12t2 ∧x12t3)∧¬(x21t2 ∧x21t3)∧¬(x22t2 ∧x22t3)

3.
(
(x11t1 ∧ x12t1)∨ (x11t1 ∧ x12t2)∨ (x11t1 ∧ x12t3)∨

(x11t2 ∧ x12t1)∨ (x11t2 ∧ x12t2)∨ (x11t2 ∧ x12t3)
)
∧(

(x21t1 ∧ x22t1)∨ (x21t1 ∧ x22t2)∨ (x21t1 ∧ x22t3)∨

(x21t2 ∧ x22t1)∨ (x21t2 ∧ x22t2)∨ (x21t2 ∧ x22t3)
)

4.
(
(x11t1 ∧ x21t2)∨ (x11t1 ∧ x21t3)∨ (x11t2 ∧ x21t1)∨ (x11t3 ∧ x21t1)

)
∧(

(x12t1 ∧ x22t2)∨ (x12t1 ∧ x22t3)∨ (x12t2 ∧ x22t1)∨ (x12t3 ∧ x22t1)
)

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

g
b

r
b

r
b

g
b

r
z

g
b

t1 t2 t3
First row:

g
b

r
b

r
b

g
b

t1 t2

Then Φ is the conjunction of:
1. x11t1 ∧ x12t2

2. ¬(x11t1 ∧x11t2)∧¬(x12t1 ∧x12t2)∧¬(x21t1 ∧x21t2)∧¬(x22t1 ∧x22t2)∧
¬(x11t1 ∧x11t3)∧¬(x12t1 ∧x12t3)∧¬(x21t1 ∧x21t3)∧¬(x22t1 ∧x22t3)∧

¬(x11t2 ∧x11t3)∧¬(x12t2 ∧x12t3)∧¬(x21t2 ∧x21t3)∧¬(x22t2 ∧x22t3)

3.
(
(x11t1 ∧ x12t1)∨ (x11t1 ∧ x12t2)∨ (x11t1 ∧ x12t3)∨

(x11t2 ∧ x12t1)∨ (x11t2 ∧ x12t2)∨ (x11t2 ∧ x12t3)
)
∧(

(x21t1 ∧ x22t1)∨ (x21t1 ∧ x22t2)∨ (x21t1 ∧ x22t3)∨

(x21t2 ∧ x22t1)∨ (x21t2 ∧ x22t2)∨ (x21t2 ∧ x22t3)
)

4.
(
(x11t1 ∧ x21t2)∨ (x11t1 ∧ x21t3)∨ (x11t2 ∧ x21t1)∨ (x11t3 ∧ x21t1)

)
∧(

(x12t1 ∧ x22t2)∨ (x12t1 ∧ x22t3)∨ (x12t2 ∧ x22t1)∨ (x12t3 ∧ x22t1)
)

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

g
b

r
b

r
b

g
b

r
z

g
b

t1 t2 t3
First row:

g
b

r
b

r
b

g
b

t1 t2

Then Φ is the conjunction of:
1. x11t1 ∧ x12t2

2. ¬(x11t1 ∧x11t2)∧¬(x12t1 ∧x12t2)∧¬(x21t1 ∧x21t2)∧¬(x22t1 ∧x22t2)∧
¬(x11t1 ∧x11t3)∧¬(x12t1 ∧x12t3)∧¬(x21t1 ∧x21t3)∧¬(x22t1 ∧x22t3)∧

¬(x11t2 ∧x11t3)∧¬(x12t2 ∧x12t3)∧¬(x21t2 ∧x21t3)∧¬(x22t2 ∧x22t3)

3.
(
(x11t1 ∧ x12t1)∨ (x11t1 ∧ x12t2)∨ (x11t1 ∧ x12t3)∨

(x11t2 ∧ x12t1)∨ (x11t2 ∧ x12t2)∨ (x11t2 ∧ x12t3)
)
∧(

(x21t1 ∧ x22t1)∨ (x21t1 ∧ x22t2)∨ (x21t1 ∧ x22t3)∨

(x21t2 ∧ x22t1)∨ (x21t2 ∧ x22t2)∨ (x21t2 ∧ x22t3)
)

4.
(
(x11t1 ∧ x21t2)∨ (x11t1 ∧ x21t3)∨ (x11t2 ∧ x21t1)∨ (x11t3 ∧ x21t1)

)
∧(

(x12t1 ∧ x22t2)∨ (x12t1 ∧ x22t3)∨ (x12t2 ∧ x22t1)∨ (x12t3 ∧ x22t1)
)

P = NP?

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L ′ ∈ NP.

As L is NP-complete, there is a polynomial-time reduction f with

x ∈ L ′ ⇐⇒ f (x) ∈ L

Since L ∈ P, we can compute f (x) ∈ L in polynomial time.

Thus x ∈ L ′ can be decided in polynomial time.

Hence L ′ ∈ P.

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L ′ ∈ NP.

As L is NP-complete, there is a polynomial-time reduction f with

x ∈ L ′ ⇐⇒ f (x) ∈ L

Since L ∈ P, we can compute f (x) ∈ L in polynomial time.

Thus x ∈ L ′ can be decided in polynomial time.

Hence L ′ ∈ P.

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L ′ ∈ NP.

As L is NP-complete, there is a polynomial-time reduction f with

x ∈ L ′ ⇐⇒ f (x) ∈ L

Since L ∈ P, we can compute f (x) ∈ L in polynomial time.

Thus x ∈ L ′ can be decided in polynomial time.

Hence L ′ ∈ P.

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L ′ ∈ NP.

As L is NP-complete, there is a polynomial-time reduction f with

x ∈ L ′ ⇐⇒ f (x) ∈ L

Since L ∈ P, we can compute f (x) ∈ L in polynomial time.

Thus x ∈ L ′ can be decided in polynomial time.

Hence L ′ ∈ P.

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L ′ ∈ NP.

As L is NP-complete, there is a polynomial-time reduction f with

x ∈ L ′ ⇐⇒ f (x) ∈ L

Since L ∈ P, we can compute f (x) ∈ L in polynomial time.

Thus x ∈ L ′ can be decided in polynomial time.

Hence L ′ ∈ P.

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L ′ ∈ NP.

As L is NP-complete, there is a polynomial-time reduction f with

x ∈ L ′ ⇐⇒ f (x) ∈ L

Since L ∈ P, we can compute f (x) ∈ L in polynomial time.

Thus x ∈ L ′ can be decided in polynomial time.

Hence L ′ ∈ P.

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L ′ ∈ NP.

As L is NP-complete, there is a polynomial-time reduction f with

x ∈ L ′ ⇐⇒ f (x) ∈ L

Since L ∈ P, we can compute f (x) ∈ L in polynomial time.

Thus x ∈ L ′ can be decided in polynomial time.

Hence L ′ ∈ P.

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

co-NP

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

Theorem
If an NP-complete problem is in co-NP, then NP = co-NP.

Note that there are problems that are both in NP ∩ co-NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

Theorem
If an NP-complete problem is in co-NP, then NP = co-NP.

Note that there are problems that are both in NP ∩ co-NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

Theorem
If an NP-complete problem is in co-NP, then NP = co-NP.

Note that there are problems that are both in NP ∩ co-NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

Theorem
If an NP-complete problem is in co-NP, then NP = co-NP.

Note that there are problems that are both in NP ∩ co-NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

Theorem
If an NP-complete problem is in co-NP, then NP = co-NP.

Note that there are problems that are both in NP ∩ co-NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

Theorem
If an NP-complete problem is in co-NP, then NP = co-NP.

Note that there are problems that are both in NP ∩ co-NP.

Space Complexity

Space Complexity

Let f ,g : N → N.

A nondeterministic Turing machine M

runs in space f

if for every input w , every computation of M visits at most f (|w |)
positions on the tape.

The function f gives an upper bound on the number of visited
cells on the tape in terms of the length of the input word.

Space Complexity

Let f ,g : N → N.

A nondeterministic Turing machine M

runs in space f

if for every input w , every computation of M visits at most f (|w |)
positions on the tape.

The function f gives an upper bound on the number of visited
cells on the tape in terms of the length of the input word.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = {L(M) | M nondeterministic polynomial space TM }

PSpace = {L(M) | M deterministic polynomial space TM }

P ⊆ PSpace NP ⊆ NPSpace

Theorem of Savitch

PSpace = NPSpace

Actually, the theorem says something more general:

If L is accepted by a nondeterministic TM in f (n) space,
then L is accepted by a deterministic TM in f (n)2 space.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = {L(M) | M nondeterministic polynomial space TM }

PSpace = {L(M) | M deterministic polynomial space TM }

P ⊆ PSpace NP ⊆ NPSpace

Theorem of Savitch

PSpace = NPSpace

Actually, the theorem says something more general:

If L is accepted by a nondeterministic TM in f (n) space,
then L is accepted by a deterministic TM in f (n)2 space.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = {L(M) | M nondeterministic polynomial space TM }

PSpace = {L(M) | M deterministic polynomial space TM }

P ⊆ PSpace NP ⊆ NPSpace

Theorem of Savitch

PSpace = NPSpace

Actually, the theorem says something more general:

If L is accepted by a nondeterministic TM in f (n) space,
then L is accepted by a deterministic TM in f (n)2 space.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = {L(M) | M nondeterministic polynomial space TM }

PSpace = {L(M) | M deterministic polynomial space TM }

P ⊆ PSpace NP ⊆ NPSpace

Theorem of Savitch

PSpace = NPSpace

Actually, the theorem says something more general:

If L is accepted by a nondeterministic TM in f (n) space,
then L is accepted by a deterministic TM in f (n)2 space.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = {L(M) | M nondeterministic polynomial space TM }

PSpace = {L(M) | M deterministic polynomial space TM }

P ⊆ PSpace NP ⊆ NPSpace

Theorem of Savitch

PSpace = NPSpace

Actually, the theorem says something more general:

If L is accepted by a nondeterministic TM in f (n) space,
then L is accepted by a deterministic TM in f (n)2 space.

PSpace-completeness

P co−NPNP

PSpace

It is unknown whether these inclusions are strict.

A language L ∈ PSpace is PSpace-complete if every language
L ′ ∈ PSpace is polynomial-time reducible to L.

L(r) = Σ∗ ? for regular expression r is PSpace-complete.

PSpace-completeness

P co−NPNP

PSpace

It is unknown whether these inclusions are strict.

A language L ∈ PSpace is PSpace-complete if every language
L ′ ∈ PSpace is polynomial-time reducible to L.

L(r) = Σ∗ ? for regular expression r is PSpace-complete.

The Classes EXP, NEXP and EXPSpace

The Classes EXP and NEXP

A nondeterministic Turing machine M is
exponential time if M runs in time 2p(|x |) and
exponential space if M runs in space 2p(|x |)

for some polynomial p.

NEXP = {L(M) | M nondeterm. exponential time TM }

EXP = {L(M) | M deterministic exponential time TM }

NEXPSpace = {L(M) | M nondeterm. exponential space TM }

EXPSpace = {L(M) | M deterministic exponential space TM }

P ⊆ NP ⊆ PSpace ⊆ EXP ⊆ NEXP ⊆ EXPSpace
It is unknown whether these inclusions are strict. We know

P 6= EXP NP 6= NEXP PSpace 6= EXPSpace = NEXPSpace

PSpace ⊆ EXP holds since a polynomial-space TM can at
most take an exponential number of configurations.

The Classes EXP and NEXP

A nondeterministic Turing machine M is
exponential time if M runs in time 2p(|x |) and
exponential space if M runs in space 2p(|x |)

for some polynomial p.

NEXP = {L(M) | M nondeterm. exponential time TM }

EXP = {L(M) | M deterministic exponential time TM }

NEXPSpace = {L(M) | M nondeterm. exponential space TM }

EXPSpace = {L(M) | M deterministic exponential space TM }

P ⊆ NP ⊆ PSpace ⊆ EXP ⊆ NEXP ⊆ EXPSpace
It is unknown whether these inclusions are strict. We know

P 6= EXP NP 6= NEXP PSpace 6= EXPSpace = NEXPSpace

PSpace ⊆ EXP holds since a polynomial-space TM can at
most take an exponential number of configurations.

The Classes EXP and NEXP

A nondeterministic Turing machine M is
exponential time if M runs in time 2p(|x |) and
exponential space if M runs in space 2p(|x |)

for some polynomial p.

NEXP = {L(M) | M nondeterm. exponential time TM }

EXP = {L(M) | M deterministic exponential time TM }

NEXPSpace = {L(M) | M nondeterm. exponential space TM }

EXPSpace = {L(M) | M deterministic exponential space TM }

P ⊆ NP ⊆ PSpace ⊆ EXP ⊆ NEXP ⊆ EXPSpace
It is unknown whether these inclusions are strict. We know

P 6= EXP NP 6= NEXP PSpace 6= EXPSpace = NEXPSpace

PSpace ⊆ EXP holds since a polynomial-space TM can at
most take an exponential number of configurations.

Complexity Hierarchy

P co−NPNP

PSpace

EXP

EXPSpace

co−NEXPNEXP

The following inclusions are known to be strict:

P 6= EXP NP 6= NEXP PSpace 6= EXPSpace

	Complexity
	NP-completeness & Polynomial-Time Reduction
	The Class co-NP
	PSpace & NPSpace, Theorem of Savage
	PSpace-completeness
	The Classes EXP and NEXP

