Automata Theory :: Complexity

Jorg Endrullis

Vrije Universiteit Amsterdam

Big O Notation

Letf,g:N — R.y. Then
fecOlgg & 3IC>0.3ny.f(n)<C-g(n)foralln>ng

Big O Notation

Letf,g:N — R.y. Then

feOlg &
n? € O(n?)
Can?+ Ca1n® 1+ ... 4+ ¢ € O(n?)
n?c O(b")
log,n e O(n°)
)

log, n € O(log, n

3C > 0. dng. f(n) < C-g(n) forall n > ngy

forall0<a<b
foralla> 0
foralla>0and b > 1
forall a,b > 0
foralla,b >0

Big O Notation

Letf,g:N — R.y. Then

feOlg &
n? € O(n?)
Can?+ Ca1n® 1+ ... 4+ ¢ € O(n?)
n?c O(b")
log,n e O(n°)
)

log, n € O(log, n

By definition log, a" = n.

3C > 0. dng. f(n) < C-g(n) forall n > ngy

forall0<a<b
foralla> 0
foralla>0and b > 1
forall a,b > 0
foralla,b >0

Big O Notation

Letf,g:N — R.y. Then

feOlg &
n? € O(n?)
Can?+ Ca1n® 1+ ... 4+ ¢ € O(n?)
n?c O(b")
log,n e O(n°)
)

log, n € O(log, n

3C > 0. dng. f(n) < C-g(n) forall n > ngy

forall0<a<b
foralla> 0
foralla>0and b > 1
forall a,b > 0
foralla,b >0

By definition log, a” = n. This implies &°%" = n

Big O Notation

Letf,g:N — R.y. Then

feOlg &
n? € O(n?)
Can?+ Ca1n® 1+ ... 4+ ¢ € O(n?)
n?c O(b")
log,n e O(n°)
)

log, n € O(log, n

3C > 0. dng. f(n) < C-g(n) forall n > ngy

forall0<a<b
foralla> 0
foralla>0and b > 1
forall a,b > 0
foralla,b >0

By definition log, a” = n. This implies a'°2a” = n, and hence

alOga b-logyn _

Hence log, b - log, n = log, n.

(dozab)ose™ — plozsn —

Time Complexity: P and NP

Time Complexity

Letf,g: N — N.
A nondeterministic Turing machine M
runs in time f

if for every input w, every computation of M reaches a halting
state after at most f(|w|) steps.

Time Complexity

Letf,g: N — N.
A nondeterministic Turing machine M
runs in time f

if for every input w, every computation of M reaches a halting
state after at most f(|w|) steps.

The function f gives an upper bound on the number of
computation steps in terms of the length of the input word.

Time Complexity

Letf,g: N — N.
A nondeterministic Turing machine M
runs in time f

if for every input w, every computation of M reaches a halting
state after at most f(|w|) steps.

The function f gives an upper bound on the number of
computation steps in terms of the length of the input word.

A Turing machine M has
time complexity O(g)

if there exists f € O(g) such that M runs in time f.

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(n*) for some k.

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(n*) for some k.
NP is the class of languages accepted by nondeterministic

polynomial time Turing machines:

NP = {L(M) | M is nondeterministic polynomial time TM }

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(n*) for some k.

NP is the class of languages accepted by nondeterministic
polynomial time Turing machines:

NP = {L(M) | M is nondeterministic polynomial time TM }

P is the class of languages accepted by deterministic
polynomial time Turing machines:

P ={L(M) | M is deterministic polynomial time TM }

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M
runs in time p for some polynomial p.

Equivalently, M has time complexity O(n*) for some k.

NP is the class of languages accepted by nondeterministic
polynomial time Turing machines:

NP = {L(M) | M is nondeterministic polynomial time TM }
P is the class of languages accepted by deterministic

polynomial time Turing machines:

P ={L(M) | M is deterministic polynomial time TM }

Clearly P C NP, but it is unknown whether P = NP.

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
B every instance has a finite set of possible solutions,

m correctness of a solution can be checked in polynomial time

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
B every instance has a finite set of possible solutions,

m correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length < k is in NP.

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
B every instance has a finite set of possible solutions,

m correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length < k is in NP.

Satisfiability in propositional logic is in NP.

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
B every instance has a finite set of possible solutions,

m correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length < k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Problems in NP

Recall, that the language corresponding to a decision problem
consists of words representing instances of the problem for
which the answer is yes.

Intuitively a problem is in NP if:
B every instance has a finite set of possible solutions,

m correctness of a solution can be checked in polynomial time

The question whether the travelling salesman
problem has a solution of length < k is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Satisfiability in Propositional Logic
A formula of propositional logic consists of
true conjunction A\ variables

false disjunction Vv negation —

A formula of propositional logic ¢ is satisfiable if there exists
an assignment of true and false to the variables such that ¢
evaluates to true.

Satisfiability in Propositional Logic
A formula of propositional logic consists of
true conjunction A\ variables

false disjunction Vv negation —

A formula of propositional logic ¢ is satisfiable if there exists
an assignment of true and false to the variables such that ¢
evaluates to true.

Theorem
Satisfiability of formulas of propositional logic is in NP.

Satisfiability in Propositional Logic
A formula of propositional logic consists of

true conjunction A\ variables
false disjunction negation —

A formula of propositional logic ¢ is satisfiable if there exists
an assignment of true and false to the variables such that ¢
evaluates to true.

Theorem
Satisfiability of formulas of propositional logic is in NP.

Proof.
We can construct a nondeterministic Turing machine that
B guesses an assignment of true and false to the variables,

m evaluates the formula (in polynomial time), and
accepts if the evaluation is true. O

NP-completeness

NP-completeness

Let Ly € X7 and L, C X} be decision problems (languages).

Then Ly is polynomial-time reducible to L, if there exists a
polynomial-time computable function 7 : £ — X3 such that:

xely & f(x)elp

NP-completeness

Let Ly € X7 and L, C X} be decision problems (languages).

Then Ly is polynomial-time reducible to L, if there exists a
polynomial-time computable function 7 : £ — X3 such that:

xely & f(x)elp

To decide if x € Ly, we can compute f(x) and check f(x) € L.

So the problem L; is reduced to the problem L,.

NP-completeness

Let Ly € X7 and L, C X} be decision problems (languages).

Then Ly is polynomial-time reducible to L, if there exists a
polynomial-time computable function 7 : £ — X3 such that:

xely & f(x)elp

To decide if x € Ly, we can compute f(x) and check f(x) € L.

So the problem L; is reduced to the problem L,.

Letf: X} — X5 and g: X5 — X3 be polynomial-time reductions.
The composition go f: £j — X3 is a polynomial-time reduction.

NP-completeness

Let Ly € X7 and L, C X} be decision problems (languages).

Then Ly is polynomial-time reducible to L, if there exists a
polynomial-time computable function 7 : £ — X3 such that:

xely & f(x)elp

To decide if x € Ly, we can compute f(x) and check f(x) € L.

So the problem L; is reduced to the problem L,.

Letf: X} — X5 and g: X5 — X3 be polynomial-time reductions.
The composition go f: £j — X3 is a polynomial-time reduction.

NP-completeness

A language L € NP is NP-complete if every language in NP is
polynomial time reducible to L.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length < k is NP-complete.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length < k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length < k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length < k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a
solution of length < k is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a
cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

...and many more questions

Bounded Tiling Problem

Bounded Tiling Problem

Given a finite collection of types of 1 x 1 tiles with a colour on
each side. (There are infinitely many tiles of each type.)

VR R

Bounded Tiling Problem

Given a finite collection of types of 1 x 1 tiles with a colour on
each side. (There are infinitely many tiles of each type.)

% N N>
|| | | | |
AR O\ /9N
Bonded tiling problem: the input is n € N, a finite collection of
types of tiles, the first row of n tiles.

Is it possible to tile an n x n field (with the given first row)?

When connecting tiles, the touching side must have the same
colour. Tiles must not be rotated.

Bounded Tiling Problem

Given a finite collection of types of 1 x 1 tiles with a colour on
each side. (There are infinitely many tiles of each type.)

VR R

Bonded tiling problem: the input is n € N, a finite collection of
types of tiles, the first row of n tiles.

Is it possible to tile an n x n field (with the given first row)?

When connecting tiles, the touching side must have the same
colour. Tiles must not be rotated.

Example n = 2:

first row incomplete tiling correct tiling

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
B guesses an n x ntiling, and

m afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
B guesses an n x ntiling, and

m afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
B guesses an n x ntiling, and

m afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
B guesses an n x ntiling, and

m afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
B guesses an n x ntiling, and

m afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x € L(M) ? to the
bounded tiling problem.

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof
First, we argue that the bounded tiling problem is in NP.

We can construct a nondeterministic Turing machien that
B guesses an n x ntiling, and

m afterwards checks whether the solution is correct.
Both steps can be done in polynomial time.

Second, we show NP-completeness.

Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time p(k) for some polynomial p(k).

We give a polynomial-time reduction of x € L(M) ? to the

bounded tiling problem. continued on the next slide. ..

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)

For input word x = ay - - - a5 we choose n=2p(k) + 1.
(Assume p(k) > k, otherwise make it so.)

As first row we choose:

N N AN e N
/N /N
p(k) p(k)

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)

For input word x = ay - - - a5 we choose n=2p(k) + 1.
(Assume p(k) > k, otherwise make it so.)

As first row we choose:
=% 0 _T\qoa a 8 0 =%
N N
(k) p(k)

Tiles for buﬂdmg the first row (for every aez):

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)

For input word x = ay - - - a5 we choose n=2p(k) + 1.
(Assume p(k) > k, otherwise make it so.)

As first row we choose:
=% 0 _T\qoa a 8 0 =%
N N
(k) p(k)

Tiles for bU|Id|ng the first row (for every aez):

continued on the next slide. ..

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for buﬂdmg the first row (for every aey):

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for buﬂdmg the first row (for every aey):

Tiles S|mulat|ng the computatlon of M (for every cel):

forrbReéq, forrbLequ,

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for buﬂdmg the first row (for every aey):

Tiles S|mulat|ng the computatlon of M (for every cel):

forrbReéq, forrbLequ,

Tiles for leaving the tape unchanged (foreveryge F,ceTl):

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for buﬂdmg the first row (for every aey):

Tiles S|mulat|ng the computatlon of M (for every cel):

forrbReéq, forrbLequ,

Tiles for leaving the tape unchanged (foreveryge F,ceTl):

continued on the next slide. ..

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a; - - - ax and with the indicated starting row:

n x nfield can betiled <+ xe€L(M)

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a; - - - ax and with the indicated starting row:

n x nfield can be tiled << x¢& L(M)
Every tiling simulates a computation of M on input x.

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a; - - - ax and with the indicated starting row:

n x nfield can be tiled << x¢& L(M)
Every tiling simulates a computation of M on input x.

The computation takes at most p(k) steps.

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a; - - - ax and with the indicated starting row:

n x nfield can betiled <+ xe€L(M)
Every tiling simulates a computation of M on input x.
The computation takes at most p(k) steps.

So the computation fills only p(k) < n rows of the tiling.

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a; - - - ax and with the indicated starting row:

n x nfield can be tiled << x¢& L(M)
Every tiling simulates a computation of M on input x.
The computation takes at most p(k) steps.
So the computation fills only p(k) < n rows of the tiling.

Hence, the n x ntiling can only be completed using

N%-C/
el
YACIAN

which exists only for g € F.

Bounded Tiling Problem is NP-complete

Proof continued. . .
Then, for input x = a; - - - ax and with the indicated starting row:

n x nfield can be tiled << x¢& L(M)
Every tiling simulates a computation of M on input x.
The computation takes at most p(k) steps.
So the computation fills only p(k) < n rows of the tiling.

Hence, the n x ntiling can only be completed using

N%-C/
el
YACIAN

which exists only for g € F.

Tiling can be finished
<= M has an accepting computation for input x.

Example

Consider the TM M with £ ={a, b}, ' = Z U {0}, F ={gy} and

6(q0aa) :{(qO)b) R)} 5(CI0>b) :{(Ch,b, L)}
Note that L(M) = L(a*b(a+ b)*) = L((a+ b)*bla+ b)")

Example

Consider the TM M with £ ={a, b}, T =X u{O}, F ={g;} and
5(%,3) :{(q03b> R)} 5(CIO>b) :{(Q1>b> L)}
Note that L(M) = L(a*b(a+ b)*) = L((a+ b)*bla-+ b)")

For input x, M takes at most | x| steps. So we take p(k) = k.

Example

Consider the TM M with £ ={a, b}, ' = Z U {0}, F ={gy} and

6(q0aa) :{(q03b> R)} 5(CIO>b) :{(Ch,b, L)}
Note that L(M) = L(a*b(a+ b)*) = L((a+ b)*b(a+ b)")

For input x, M takes at most | x| steps. So we take p(k) = k.

The tile types are:
=A== S ()=(
a1,C c
b 4 [l N Z N
JERTE(
L EN VAN /¢ N /b

foreveryceT.

Example

Consider the TM M with £ ={a, b}, ' = Z U {0}, F ={gy} and

5(‘70,3) :{(qO)b) R)} 5(CI0>b) :{(Cﬁ,b, L)}
Note that L(M) = L(a*b(a+ b)*) = L((a+ b)*b(a+ b)*)

For input x, M takes at most | x| steps. So we take p(k) = k.

The tile types are:
=A== S ()=(
a1,C c
b 4 [l N Z N
JERTE(
L EN VAN /¢ N /b

foreveryceT.

continued on the next slide. ..

Example

)

d1,C
a1,C

EE(E(R=(

Qo,a

§ B

Consider the input word aaa ¢ L(M). Then n=2p(3) + 1

g1,/
)l
/¢ N

$30:C
&
/¢ N\

JH B

=7.

Example

)

d1,C
a1,C

EE(E(R=(

Qo,a

§ B

Consider the input word aaa ¢ L(M). Then n=2p(3) + 1

g1,/
)l
/¢ N

$30:C
&
/¢ N\

JH B

=7.

Example

[qo,aj %0.b [a j [b j [= j Gi,C [c j
a1,C c

)= =GR = <

Consider the input word aaa ¢ L(M). Then n=2p(3) +1 =7.

Example

(A== =

E

d1,C
a1,C

gﬁa

el UK

Consider the input word aaa ¢ L(M). Then n=

|\>
S
w

] =] =] b b 9,3 [m]
(i
gle
m] m]] b Qo,a a m]
]] O b Qo,a a 0
(A
gle
m] m] m] Qo,a@ a a 0
] =] [H] qo,a a a =]

Example

(=R =R =R =)= ()=
aq1,C
/A e\ /e N b\
Consider the input word aaa ¢ L(M). Then n=2p(3
] O O b b b & ’qO»D
t(’D_ o
m] m] m] b b Qo,a m]
=] =] =] b b Q0,3 =]
i
63_ o
m] m]] b Qo,a a m]
]] [m] b Q0,8 a O
o
BO_ o
m] m] m] Qo,a@ a a 0
] O O J0,a a a O

Example

:QOya: qu:,bﬂ : : : : : : :Qh : D:Q
q1,C
e B T B
CTENIVEPEN Para 77N
Consider the input word aaa ¢ L(M). Then n=2p(3) +1 =
] O O b b b Q0,0
é S
m] m] m] b b Qo,a m]
=] =] =] b b Q0,3 =]
i
GO_ o
m] m]] b Qo,a a m]
]] O b Qo,a a O
o
SIS
m] m] m] Qo,a@ a a 0
O O O 00,2 a a O

The tiling cannot be completed.

Example continued

Consider the input word aab € L(M). Thenn=2p(3) +1 =7.

Example continued

Consider the input word aab € L(M). Thenn=2p(3) +1 =7.

]] =] Qo0,a a b =]

Example continued

Consider the input word aab € L(M). Thenn=2p(3) +1 =7.

o,
pEO=(=()= =(=()=d
0 7

Example continued

Consider the input word aab € L(M). Thenn=2p(3) +1 =7.

] =]] b b & rqo,b [m]
SIE
m] m] =] b Qo,4d b m]
] O] b 90,2 b [m]
o
SIE
m] m] d Qo,a@ a b m]
] W] =] Qo,a a b =]

Example continued

Consider the input word aab € L(M). Thenn=2p(3) +1 =7.

O O O b q1’b—,'—,' b O
SIS
=] m] m] b b o, m]
] O O b b & rqo'b O
SIE
m] m] =] b Qo,4d b m]
] O] b 90,2 b [m]
o
co_ o
m] m] d Qo,a@ a b m]
] W] =] Qo,a a b =]

Example continued

Consider the input word aab € L(M). Thenn=2p(3) +1 =7.

] O O b g1,b b O
=] m] m] b 91 b m]
] O O b g1,b b O
-
SIS
=] m] m] b b o, m]
] O O b b & rqo'b O
SIE
m] m] =] b Qo,4d b m]
] O] b 90,2 b [
o
co_ o
m] m] d Qo,a@ a b m]
] W] =] Qo,a a b =]

Example continued

Consider the input word aab € L(M). Thenn=2p(3) +1 =7.

O O O b g1,b b O
=] m] m] b 91 b m]
O O O b g1,b b O
=] m] m] b 91 b m]
] O O b g1,b b O
-
SIS
=] m] m] b b o, m]
O
O] O b b & qu‘b
SIE
m] m] =] b Qo,4d b m]
] O] b 90,2 b [
o
co_ o
m] m] d Qo,a@ a b m]
] W] =] Qo,a a b =]

Example continued

p3)+1=7.
O

Consider the input word aab € L(M). Then n=2
]] =] b ai,b b
m] m] m] b 9 b m]
] O O b g1,b b O
=] m] m] b 9 b m]
O O O b g1,b b O
=] m] m] b 91 b [m]
] O O b g1,b b O
-
SHiS)
=] m] m] b b o, m]
] O O b b & rqo‘b O
SIE
m] m] =] b Qo,4d b m]
] O] b 90,2 b [
oo
SIE
m] m] d Qo,a@ a b m]
] W] =] Qo,a a b =]

Complete tiling of the 7 x 7 field.

Satisfiability Problem

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof

We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.
Given
® a set T of tile types,
® a number n,
m a first row of tiles & - - - t,.

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.
Given
® a set T of tile types,
® a number n,
m a first row of tiles & - - - t,.

We create a satisfiability problem as follows.

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.
Given
® a set T of tile types,
® a number n,
m a first row of tiles & - - - t,.

We create a satisfiability problem as follows.

We introduce Boolean variables x; for1 <r,c<nandte T.
Intention: x,;; = true < tile of type t at row r and column c.

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Proof
We give a polynomial-time reduction from the bounded tiling
problem to the satisfiability problem.
Given
® a set T of tile types,
® a number n,
m a first row of tiles & - - - t,.

We create a satisfiability problem as follows.

We introduce Boolean variables x; for1 <r,c<nandte T.
Intention: x,;; = true < tile of type t at row r and column c.

continued on the next slide. ..

Satisfiability Problem is NP-complete

Proof continued. . .
We define @ to be the conjunction of the 4 formulas:
1. Fistrowis t; -- - tp: /\g:1 Xict,

2. At every position at most one tile type:

Ar=1 Ne-t Ntptr ~(Xret /\ Xretr)
3. Neighbouring tiles must match (horizontal neighbours):
AV /\2;1 it matches (Xret /\ Xr(c1)t/)

4. Neighbouring tiles must match (vertical neighbours):

n—1 n
r—1 Ne=t Vl;/matches(xrct/\X(r+1)ct/)

Satisfiability Problem is NP-complete

Proof continued. . .
We define @ to be the conjunction of the 4 formulas:
1. Fistrowis t; -- - tp: /\g:1 Xict,

2. At every position at most one tile type:

Ar=1 Ne-t Ntptr ~(Xret /\ Xretr)
3. Neighbouring tiles must match (horizontal neighbours):

n n—1
/\r:1 /\0:1 tt’matches(XfCt A Xf(CJrUt')

4. Neighbouring tiles must match (vertical neighbours):
—1
=1 Ne—t Vl;/matches(xrct A X(r1)ct')

Size of the formula is polynomial in n.

Satisfiability Problem is NP-complete

Proof continued. . .
We define @ to be the conjunction of the 4 formulas:
1. Fistrowis t; -- - tp: /\g:1 Xict,

2. At every position at most one tile type:
Ar=1 Ne-t Ntptr ~(Xret /\ Xretr)
3. Neighbouring tiles must match (horizontal neighbours):
—1
A=t Aozt Vit matches (Xret A\ Xr(c1)t7)
4. Neighbouring tiles must match (vertical neighbours):
—1
=1 Ne—t Vl;/matches(xrct A X(r1)ct')

Size of the formula is polynomial in n.

There exists an n x n tiling with first row ¢ - - - t,
<= the propositional formula @ is satisfiable.

Satisfiability Problem is NP-complete

Proof continued. . .
We define @ to be the conjunction of the 4 formulas:
1. Fistrowis t; -- - tp: /\g:1 Xict,

2. At every position at most one tile type:

Ar=1 Ne-t Ntptr ~(Xret /\ Xretr)
3. Neighbouring tiles must match (horizontal neighbours):

n n—1
/\r:1 /\0:1 tt’matches(XfCt A Xf(CJrUt')

4. Neighbouring tiles must match (vertical neighbours):
—1
=1 Ne—t Vl;/matches(xrct A X(r1)ct')

Size of the formula is polynomial in n.

There exists an n x n tiling with first row ¢ - - - t,
<= the propositional formula @ is satisfiable.

Thus we have a polynomial-time reduction. Ol

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles: First row:
t1 t2 t3 t1 tg

hd .4 bt L

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles: First row:
t) f3 t)

hd .4 P.A L

Then @ is the conjunction of:

1. Xq18 /\ X124,

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles: First row:
4 b

e LSS

Then @ is the conjunction of:
1. Xq18 /\ X124,

2. =(X114, AN X116) A= (X128 A X128,) AN (X211, A X211,) AN = (Xo2t, /\ Xo21,)\
(X114, AN X114,) AN (Xa2t AN\ Xa2) AN (Xa1, A Xa1,) AN (Xo2, /\ Xoog,)N\
(X116 AN X118,) AN~ (X126, AN X128) AN~ (X218, A\ X1,) /AN (Xo2p, /\ Xo2t,)

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles: First row:
4 b

e LSS

Then @ is the conjunction of:
1. Xq18 /\ X124,
2. ~(X114 AX1) A= A=

—(X114, AX11g) AN (X124 A Xi26) A
(X118 AX115) AN (X126 A\ X126) A

3. ((¥114 A Xi2e) V (Xy14, A Xy21,) V
(X116, A\ Xa2¢,) V (X114, A Xa2,) V

)V)V

)V)V

(X128, A\ X128,) AN (Xa14, A\ X214, (Xaot, /\ X224,)/\

JA—
(Xo1t, A\ Xa14,) N~ (Xoat, A\ Xa2,)\
(X211, A\ X214,) N~ (X224, /\ Xo2t;)
(X114, /\ X121)
(X118, /\ X121)
(X218, /\ Xo21,)
(X218, /\ Xa21,)

1
(X1t A\ Xo2t,) V (Xo11, /\ Xozp,
(X214, /\ Xo2t,

\V

A

V
(X214, /\ Xozt,)

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles: First row:
4 b

e LSS

Then @ is the conjunction of:
1. Xq18 /\ X124,

=(X114, N X114,
(X114, AN X114,

— (X124, A\ X12t,)

— (X121, \ X124,)
~(X116 A X118) AN~ (X128, A\ X121,

3. (X114 A X121) V (X114, A X2,

IN —(Xe1t, A Xe1t,) N~ (Xazg, /\ Xozg,)N\
AN
VAN
Y
(X116, A\ Xa2¢,) V (X114, /A Xa2t,
()V
)V
)V
Y

JAN
—(Xe1t, A Xe1t,) N\~ (Xozg, /\ Xo2g,)N\
~(Xe1t, A Xa1g,) A~ (Xo21, A\ Xo2t,)
(X114, N\ Xq2) V
(X115 /\ X126))\
(X211, /\ Xozt,
(
(
(

)

(X1t A\ Xo2t,) V (Xo11, /\ Xozp,)
Xo1t, /\ Xo2t,)
)

)

)

)

)

(X214, A\ Xoot,) V (Xo1g, /\ Xa2t,)
Xi1t, /\ Xo1t;)

Xq2t, /\ Xoot,)

X114, /\ Xo1t,

A—
/A
A—
Vv
Vv
Vv
V
V
V (Xq21, /\ Xoz,

V
)
V (X115 A\ X214,))/\
V

4. ((x114 N\ Xo1p,
((X126 /\ X221,)

(X126, /\ Xo21,

—

P =NP?

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L’ € NP.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L’ € NP.
As L is NP-complete, there is a polynomial-time reduction f with
xel' = fx) el

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L’ € NP.
As L is NP-complete, there is a polynomial-time reduction f with
xel' = fx) el

Since L € P, we can compute f(x) € L in polynomial time.

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L € NP.

As L is NP-complete, there is a polynomial-time reduction f with
xel & flx)el

Since L € P, we can compute f(x) € L in polynomial time.

Thus x € L’ can be decided in polynomial time.

Hence L' € P.

O]

NP-completeness and P = NP?

Theorem
If an NP-complete language L is also in P, then P = NP.

Proof.
Assume that L is NP-complete and in P.

Let L € NP.

As L is NP-complete, there is a polynomial-time reduction f with
xel & flx)el

Since L € P, we can compute f(x) € L in polynomial time.

Thus x € L’ can be decided in polynomial time.

Hence L' € P.

O]

For proving P = NP it suffices to show that one NP-complete
problem can be solved in deterministic polynomial time.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.
The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.
The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

The Class co-NP

A problem L is in co-NP if the complement L is in NP.

In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable
is in co-NP.

It is unknown whether NP = co-NP.

It is unknown whether the satisfiability problem is in co-NP.

The difficulty is that it has to be shown that a formula evaluates
to false for every variable assignment.

Theorem
If an NP-complete problem is in co-NP, then NP = co-NP.

Note that there are problems that are both in NP N co-NP.

Space Complexity

Space Complexity

Letf,g: N — N.
A nondeterministic Turing machine M
runs in space f

if for every input w, every computation of M visits at most f(|w|)
positions on the tape.

Space Complexity

Letf,g: N — N.
A nondeterministic Turing machine M
runs in space f

if for every input w, every computation of M visits at most f(|w|)
positions on the tape.

The function f gives an upper bound on the number of visited
cells on the tape in terms of the length of the input word.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = { L(M) | M nondeterministic polynomial space TM }
PSpace = { L(M) | M deterministic polynomial space TM}

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = { L(M) | M nondeterministic polynomial space TM }
PSpace = { L(M) | M deterministic polynomial space TM}

P C PSpace NP C NPSpace

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = { L(M) | M nondeterministic polynomial space TM }
PSpace = { L(M) | M deterministic polynomial space TM}
P C PSpace NP C NPSpace

Theorem of Savitch

PSpace = NPSpace

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M
runs in space p for some polynomial p.

NPSpace = { L(M) | M nondeterministic polynomial space TM }
PSpace = { L(M) | M deterministic polynomial space TM}

P C PSpace NP C NPSpace

Theorem of Savitch
PSpace = NPSpace
Actually, the theorem says something more general:

If L is accepted by a nondeterministic TM in f(n) space,
then L is accepted by a deterministic TM in f(n)? space.

PSpace-completeness

It is unknown whether these inclusions are strict.

PSpace-completeness

It is unknown whether these inclusions are strict.

A language L € PSpace is PSpace-complete if every language
L' € PSpace is polynomial-time reducible to L.

L(r) = £* ? for regular expression r is PSpace-complete.

The Classes EXP, NEXP and EXPSpace

The Classes EXP and NEXP

A nondeterministic Turing machine M is

= exponential time if M runs in time 2°(X) and
= exponential space if M runs in space 2P(X!)

for some polynomial p.

The Classes EXP and NEXP

A nondeterministic Turing machine M is

= exponential time if M runs in time 2°P(X) and
= exponential space if M runs in space 2°P(X)

for some polynomial p.

NEXP = { L(M) | M nondeterm. exponential time TM }
EXP = {L(M) | M deterministic exponential time TM }
NEXPSpace = { L(M) | M nondeterm. exponential space TM}
EXPSpace = { L(M) | M deterministic exponential space TM}

The Classes EXP and NEXP

A nondeterministic Turing machine M is

= exponential time if M runs in time 2°P(X) and
= exponential space if M runs in space 2°P(X)

for some polynomial p.

NEXP = { L(M) | M nondeterm. exponential time TM }
EXP = {L(M) | M deterministic exponential time TM }
NEXPSpace = { L(M) | M nondeterm. exponential space TM}
EXPSpace = { L(M) | M deterministic exponential space TM}

P C NP C PSpace € EXP C NEXP C EXPSpace
It is unknown whether these inclusions are strict. We know

P #EXP NP #NEXP PSpace # EXPSpace = NEXPSpace

PSpace C EXP holds since a polynomial-space TM can at
most take an exponential number of configurations.

Complexity Hierarchy

EXPSpace

The following inclusions are known to be strict:
P # EXP NP # NEXP PSpace # EXPSpace

	Complexity
	NP-completeness & Polynomial-Time Reduction
	The Class co-NP
	PSpace & NPSpace, Theorem of Savage
	PSpace-completeness
	The Classes EXP and NEXP

