Automata Theory :: Complexity

Jörg Endrullis

Vrije Universiteit Amsterdam

Big O Notation

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$. Then
$f \in O(g) \quad \Longleftrightarrow \quad \exists C>0 . \exists n_{0} . f(n) \leq C \cdot g(n)$ for all $n \geq n_{0}$

Big O Notation

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$. Then
$f \in O(g) \quad \Longleftrightarrow \quad \exists C>0 . \exists n_{0} . f(n) \leq C \cdot g(n)$ for all $n \geq n_{0}$

$$
\begin{aligned}
n^{a} \in O\left(n^{b}\right) & \text { for all } 0<a \leq b \\
c_{a} n^{a}+c_{a-1} n^{a-1}+\cdots+c_{0} \in O\left(n^{a}\right) & \text { for all } a>0 \\
n^{a} \in O\left(b^{n}\right) & \text { for all } a>0 \text { and } b>1 \\
\log _{a} n \in O\left(n^{b}\right) & \text { for all } a, b>0 \\
\log _{a} n \in O\left(\log _{b} n\right) & \text { for all } a, b>0
\end{aligned}
$$

Big O Notation

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$. Then

$$
f \in O(g) \quad \Longleftrightarrow \quad \exists C>0 . \exists n_{0} \cdot f(n) \leq C \cdot g(n) \text { for all } n \geq n_{0}
$$

$$
\begin{aligned}
n^{a} \in O\left(n^{b}\right) & \text { for all } 0<a \leq b \\
c_{a} n^{a}+c_{a-1} n^{a-1}+\cdots+c_{0} \in O\left(n^{a}\right) & \text { for all } a>0 \\
n^{a} \in O\left(b^{n}\right) & \text { for all } a>0 \text { and } b>1 \\
\log _{a} n \in O\left(n^{b}\right) & \text { for all } a, b>0 \\
\log _{a} n \in O\left(\log _{b} n\right) & \text { for all } a, b>0
\end{aligned}
$$

By definition $\log _{a} a^{n}=n$.

Big O Notation

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$. Then

$$
f \in O(g) \quad \Longleftrightarrow \quad \exists C>0 . \exists n_{0} \cdot f(n) \leq C \cdot g(n) \text { for all } n \geq n_{0}
$$

$$
\begin{aligned}
n^{a} \in O\left(n^{b}\right) & \text { for all } 0<a \leq b \\
c_{a} n^{a}+c_{a-1} n^{a-1}+\cdots+c_{0} \in O\left(n^{a}\right) & \text { for all } a>0 \\
n^{a} \in O\left(b^{n}\right) & \text { for all } a>0 \text { and } b>1 \\
\log _{a} n \in O\left(n^{b}\right) & \text { for all } a, b>0 \\
\log _{a} n \in O\left(\log _{b} n\right) & \text { for all } a, b>0
\end{aligned}
$$

By definition $\log _{a} a^{n}=n$. This implies $a^{\log _{a} n}=n$

Big O Notation

Let $f, g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$. Then

$$
f \in O(g) \quad \Longleftrightarrow \quad \exists C>0 . \exists n_{0} \cdot f(n) \leq C \cdot g(n) \text { for all } n \geq n_{0}
$$

$$
\begin{aligned}
n^{a} \in O\left(n^{b}\right) & \text { for all } 0<a \leq b \\
c_{a} n^{a}+c_{a-1} n^{a-1}+\cdots+c_{0} \in O\left(n^{a}\right) & \text { for all } a>0 \\
n^{a} \in O\left(b^{n}\right) & \text { for all } a>0 \text { and } b>1 \\
\log _{a} n \in O\left(n^{b}\right) & \text { for all } a, b>0 \\
\log _{a} n \in O\left(\log _{b} n\right) & \text { for all } a, b>0
\end{aligned}
$$

By definition $\log _{a} a^{n}=n$. This implies $a^{\log _{a} n}=n$, and hence

$$
a^{\log _{a} b \cdot \log _{b} n}=\left(a^{\log _{a} b}\right)^{\log _{b} n}=b^{\log _{b} n}=n
$$

Hence $\log _{a} b \cdot \log _{b} n=\log _{a} n$.

Time Complexity: P and NP

Time Complexity

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$.
A nondeterministic Turing machine M

runs in time f

if for every input w, every computation of M reaches a halting state after at most $f(|w|)$ steps.

Time Complexity

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$.
A nondeterministic Turing machine M

runs in time f

if for every input w, every computation of M reaches a halting state after at most $f(|w|)$ steps.

The function f gives an upper bound on the number of computation steps in terms of the length of the input word.

Time Complexity

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$.
A nondeterministic Turing machine M

runs in time f

if for every input w, every computation of M reaches a halting state after at most $f(|w|)$ steps.

The function f gives an upper bound on the number of computation steps in terms of the length of the input word.

A Turing machine M has
time complexity $O(g)$
if there exists $f \in O(g)$ such that M runs in time f.

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M runs in time p for some polynomial p.

Equivalently, M has time complexity $O\left(n^{k}\right)$ for some k.

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M runs in time p for some polynomial p.

Equivalently, M has time complexity $O\left(n^{k}\right)$ for some k.

NP is the class of languages accepted by nondeterministic polynomial time Turing machines:
$\mathbf{N P}=\{L(M) \mid M$ is nondeterministic polynomial time TM $\}$

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M runs in time p for some polynomial p.

Equivalently, M has time complexity $O\left(n^{k}\right)$ for some k.

NP is the class of languages accepted by nondeterministic polynomial time Turing machines:
$\mathbf{N P}=\{L(M) \mid M$ is nondeterministic polynomial time TM $\}$
\mathbf{P} is the class of languages accepted by deterministic polynomial time Turing machines:
$\mathbf{P}=\{L(M) \mid M$ is deterministic polynomial time TM $\}$

Complexity Classes P and NP

A nondeterministic Turing machine M is polynomial time if M runs in time p for some polynomial p.

Equivalently, M has time complexity $O\left(n^{k}\right)$ for some k.

NP is the class of languages accepted by nondeterministic polynomial time Turing machines:
$\mathbf{N P}=\{L(M) \mid M$ is nondeterministic polynomial time TM $\}$
\mathbf{P} is the class of languages accepted by deterministic polynomial time Turing machines:
$\mathbf{P}=\{L(M) \mid M$ is deterministic polynomial time TM $\}$

Clearly $\mathrm{P} \subseteq \mathrm{NP}$, but it is unknown whether $\mathrm{P}=\mathrm{NP}$.

Problems in NP

Recall, that the language corresponding to a decision problem consists of words representing instances of the problem for which the answer is yes.

Problems in NP

Recall, that the language corresponding to a decision problem consists of words representing instances of the problem for which the answer is yes.

Intuitively a problem is in NP if:

- every instance has a finite set of possible solutions,
- correctness of a solution can be checked in polynomial time

Problems in NP

Recall, that the language corresponding to a decision problem consists of words representing instances of the problem for which the answer is yes.

Intuitively a problem is in NP if:

- every instance has a finite set of possible solutions,
- correctness of a solution can be checked in polynomial time

The question whether the travelling salesman problem has a solution of length $\leq k$ is in NP.

Problems in NP

Recall, that the language corresponding to a decision problem consists of words representing instances of the problem for which the answer is yes.

Intuitively a problem is in NP if:

- every instance has a finite set of possible solutions,
- correctness of a solution can be checked in polynomial time

The question whether the travelling salesman problem has a solution of length $\leq k$ is in NP.

Satisfiability in propositional logic is in NP.

Problems in NP

Recall, that the language corresponding to a decision problem consists of words representing instances of the problem for which the answer is yes.

Intuitively a problem is in NP if:

- every instance has a finite set of possible solutions,
- correctness of a solution can be checked in polynomial time

The question whether the travelling salesman problem has a solution of length $\leq k$ is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.

Problems in NP

Recall, that the language corresponding to a decision problem consists of words representing instances of the problem for which the answer is yes.

Intuitively a problem is in NP if:

- every instance has a finite set of possible solutions,
- correctness of a solution can be checked in polynomial time

The question whether the travelling salesman problem has a solution of length $\leq k$ is in NP.

Satisfiability in propositional logic is in NP.

The questions if a number is not prime is in NP.
Surprisingly, last question in P. (Agrawal, Kayal, Saxena, 2002)

Satisfiability in Propositional Logic

A formula of propositional logic consists of

true	conjunction \wedge	variables
false	disjunction \vee	negation \neg

A formula of propositional logic ϕ is satisfiable if there exists an assignment of true and false to the variables such that ϕ evaluates to true.

Satisfiability in Propositional Logic

A formula of propositional logic consists of

true	conjunction \wedge	variables
false	disjunction \vee	negation \neg

A formula of propositional logic ϕ is satisfiable if there exists an assignment of true and false to the variables such that ϕ evaluates to true.

Theorem
Satisfiability of formulas of propositional logic is in NP.

Satisfiability in Propositional Logic

A formula of propositional logic consists of

true	conjunction \wedge	variables
false	disjunction \vee	negation \neg

A formula of propositional logic ϕ is satisfiable if there exists an assignment of true and false to the variables such that ϕ evaluates to true.

Theorem

Satisfiability of formulas of propositional logic is in NP.

Proof.

We can construct a nondeterministic Turing machine that

- guesses an assignment of true and false to the variables,
- evaluates the formula (in polynomial time), and
accepts if the evaluation is true.

NP-completeness

NP-completeness

Let $L_{1} \subseteq \Sigma_{1}^{*}$ and $L_{2} \subseteq \Sigma_{2}^{*}$ be decision problems (languages).
Then L_{1} is polynomial-time reducible to L_{2} if there exists a polynomial-time computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that:

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

NP-completeness

Let $L_{1} \subseteq \Sigma_{1}^{*}$ and $L_{2} \subseteq \Sigma_{2}^{*}$ be decision problems (languages).
Then L_{1} is polynomial-time reducible to L_{2} if there exists a polynomial-time computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that:

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

To decide if $x \in L_{1}$, we can compute $f(x)$ and check $f(x) \in L_{2}$.
So the problem L_{1} is reduced to the problem L_{2}.

NP-completeness

Let $L_{1} \subseteq \Sigma_{1}^{*}$ and $L_{2} \subseteq \Sigma_{2}^{*}$ be decision problems (languages).
Then L_{1} is polynomial-time reducible to L_{2} if there exists a polynomial-time computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that:

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

To decide if $x \in L_{1}$, we can compute $f(x)$ and check $f(x) \in L_{2}$.
So the problem L_{1} is reduced to the problem L_{2}.
Let $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ and $g: \Sigma_{2}^{*} \rightarrow \Sigma_{3}^{*}$ be polynomial-time reductions. The composition $g \circ f: \Sigma_{1}^{*} \rightarrow \Sigma_{3}^{*}$ is a polynomial-time reduction.

NP-completeness

Let $L_{1} \subseteq \Sigma_{1}^{*}$ and $L_{2} \subseteq \Sigma_{2}^{*}$ be decision problems (languages).
Then L_{1} is polynomial-time reducible to L_{2} if there exists a polynomial-time computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that:

$$
x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

To decide if $x \in L_{1}$, we can compute $f(x)$ and check $f(x) \in L_{2}$.
So the problem L_{1} is reduced to the problem L_{2}.
Let $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ and $g: \Sigma_{2}^{*} \rightarrow \Sigma_{3}^{*}$ be polynomial-time reductions. The composition $g \circ f: \Sigma_{1}^{*} \rightarrow \Sigma_{3}^{*}$ is a polynomial-time reduction.

NP-completeness

A language $L \in N P$ is NP-complete if every language in NP is polynomial time reducible to L.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a solution of length $\leq k$ is NP-complete.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a solution of length $\leq k$ is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a solution of length $\leq k$ is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a cycle that visits each node exactly once) is NP-complete.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a solution of length $\leq k$ is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.

Examples of NP-complete Problems

The question whether the travelling salesman problem has a solution of length $\leq k$ is NP-complete.

Satisfiability for formulas of propositional logic is NP-complete.

The question whether a graph contains a Hamiltonian cycle (a cycle that visits each node exactly once) is NP-complete.

The bounded tiling problem is NP-complete.
... and many more questions

Bounded Tiling Problem

Bounded Tiling Problem

Given a finite collection of types of 1×1 tiles with a colour on each side. (There are infinitely many tiles of each type.)

Bounded Tiling Problem

Given a finite collection of types of 1×1 tiles with a colour on each side. (There are infinitely many tiles of each type.)

Bonded tiling problem: the input is $n \in \mathbb{N}$, a finite collection of types of tiles, the first row of n tiles. Is it possible to tile an $n \times n$ field (with the given first row)?
When connecting tiles, the touching side must have the same colour. Tiles must not be rotated.

Bounded Tiling Problem

Given a finite collection of types of 1×1 tiles with a colour on each side. (There are infinitely many tiles of each type.)

Bonded tiling problem: the input is $n \in \mathbb{N}$, a finite collection of types of tiles, the first row of n tiles.
Is it possible to tile an $n \times n$ field (with the given first row)?
When connecting tiles, the touching side must have the same colour. Tiles must not be rotated.

Example $n=2$:

first row

incomplete tiling

correct tiling

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Bounded Tiling Problem is NP-complete

Theorem
The bounded tiling problem is NP-complete.

Proof

First, we argue that the bounded tiling problem is in NP.

Bounded Tiling Problem is NP-complete

Theorem

The bounded tiling problem is NP-complete.

Proof

First, we argue that the bounded tiling problem is in NP.
We can construct a nondeterministic Turing machien that

- guesses an $n \times n$ tiling, and
- afterwards checks whether the solution is correct.

Both steps can be done in polynomial time.

Bounded Tiling Problem is NP-complete

Theorem

The bounded tiling problem is NP-complete.

Proof

First, we argue that the bounded tiling problem is in NP.
We can construct a nondeterministic Turing machien that

- guesses an $n \times n$ tiling, and
- afterwards checks whether the solution is correct.

Both steps can be done in polynomial time.
Second, we show NP-completeness.

Bounded Tiling Problem is NP-complete

Theorem

The bounded tiling problem is NP-complete.

Proof

First, we argue that the bounded tiling problem is in NP.
We can construct a nondeterministic Turing machien that

- guesses an $n \times n$ tiling, and
- afterwards checks whether the solution is correct.

Both steps can be done in polynomial time.
Second, we show NP-completeness.
Let M be a nondeterministic polynomial-time Turing machine.

Bounded Tiling Problem is NP-complete

Theorem

The bounded tiling problem is NP-complete.

Proof

First, we argue that the bounded tiling problem is in NP.
We can construct a nondeterministic Turing machien that

- guesses an $n \times n$ tiling, and
- afterwards checks whether the solution is correct.

Both steps can be done in polynomial time.
Second, we show NP-completeness.
Let M be a nondeterministic polynomial-time Turing machine. Then M has running time $p(k)$ for some polynomial $p(k)$.

Bounded Tiling Problem is NP-complete

Theorem

The bounded tiling problem is NP-complete.

Proof

First, we argue that the bounded tiling problem is in NP.
We can construct a nondeterministic Turing machien that

- guesses an $n \times n$ tiling, and
- afterwards checks whether the solution is correct.

Both steps can be done in polynomial time.
Second, we show NP-completeness.
Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time $p(k)$ for some polynomial $p(k)$.
We give a polynomial-time reduction of $x \in L(M)$? to the bounded tiling problem.

Bounded Tiling Problem is NP-complete

Theorem

The bounded tiling problem is NP-complete.

Proof

First, we argue that the bounded tiling problem is in NP.
We can construct a nondeterministic Turing machien that

- guesses an $n \times n$ tiling, and
- afterwards checks whether the solution is correct.

Both steps can be done in polynomial time.
Second, we show NP-completeness.
Let M be a nondeterministic polynomial-time Turing machine.
Then M has running time $p(k)$ for some polynomial $p(k)$.
We give a polynomial-time reduction of $x \in L(M)$? to the bounded tiling problem.

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)
For input word $x=a_{1} \cdots a_{k}$ we choose $n=2 p(k)+1$.
(Assume $p(k) \geq k$, otherwise make it so.)
As first row we choose:

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)
For input word $x=a_{1} \cdots a_{k}$ we choose $n=2 p(k)+1$.
(Assume $p(k) \geq k$, otherwise make it so.)
As first row we choose:

Tiles for building the first row (for every $a \in \Sigma$):

Bounded Tiling Problem is NP-complete

Proof continued. . . (the starting row)
For input word $x=a_{1} \cdots a_{k}$ we choose $n=2 p(k)+1$.
(Assume $p(k) \geq k$, otherwise make it so.)
As first row we choose:

Tiles for building the first row (for every $a \in \Sigma$):

continued on the next slide...

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)
Tiles for building the first row (for every $a \in \Sigma$):

Bounded Tiling Problem is NP-complete

Proof continued. . . (the types of tiles)

Tiles for building the first row (for every $a \in \Sigma$):

Tiles simulating the computation of M (for every $c \in \Gamma$):

Bounded Tiling Problem is NP-complete

Proof continued. .. (the types of tiles)

Tiles for building the first row (for every $a \in \Sigma$):

Tiles simulating the computation of M (for every $c \in \Gamma$):

Tiles for leaving the tape unchanged (for every $q \in F, c \in \Gamma$):

Bounded Tiling Problem is NP-complete

Proof continued. .. (the types of tiles)

Tiles for building the first row (for every $a \in \Sigma$):

Tiles simulating the computation of M (for every $c \in \Gamma$):

Tiles for leaving the tape unchanged (for every $q \in F, c \in \Gamma$):

Bounded Tiling Problem is NP-complete

Proof continued...
Then, for input $x=a_{1} \cdots a_{k}$ and with the indicated starting row:
$n \times n$ field can be tiled $\Longleftrightarrow x \in L(M)$

Bounded Tiling Problem is NP-complete

Proof continued. . .

Then, for input $x=a_{1} \cdots a_{k}$ and with the indicated starting row:
$n \times n$ field can be tiled $\Longleftrightarrow x \in L(M)$
Every tiling simulates a computation of M on input x.

Bounded Tiling Problem is NP-complete

Proof continued. . .

Then, for input $x=a_{1} \cdots a_{k}$ and with the indicated starting row:
$n \times n$ field can be tiled $\Longleftrightarrow x \in L(M)$
Every tiling simulates a computation of M on input x.
The computation takes at most $p(k)$ steps.

Bounded Tiling Problem is NP-complete

Proof continued. . .

Then, for input $x=a_{1} \cdots a_{k}$ and with the indicated starting row:
$n \times n$ field can be tiled $\Longleftrightarrow x \in L(M)$
Every tiling simulates a computation of M on input x.
The computation takes at most $p(k)$ steps.
So the computation fills only $p(k)<n$ rows of the tiling.

Bounded Tiling Problem is NP-complete

Proof continued. . .

Then, for input $x=a_{1} \cdots a_{k}$ and with the indicated starting row:
$n \times n$ field can be tiled $\Longleftrightarrow x \in L(M)$
Every tiling simulates a computation of M on input x.
The computation takes at most $p(k)$ steps.
So the computation fills only $p(k)<n$ rows of the tiling.
Hence, the $n \times n$ tiling can only be completed using

which exists only for $q \in F$.

Bounded Tiling Problem is NP-complete

Proof continued. . .

Then, for input $x=a_{1} \cdots a_{k}$ and with the indicated starting row:

$$
n \times n \text { field can be tiled } \quad \Longleftrightarrow \quad x \in L(M)
$$

Every tiling simulates a computation of M on input x.
The computation takes at most $p(k)$ steps.
So the computation fills only $p(k)<n$ rows of the tiling.
Hence, the $n \times n$ tiling can only be completed using

which exists only for $q \in F$.
Tiling can be finished
$\Longleftrightarrow M$ has an accepting computation for input x.

Example

Consider the TM M with $\Sigma=\{a, b\}, \Gamma=\Sigma \cup\{\square\}, F=\left\{q_{1}\right\}$ and

$$
\delta\left(q_{0}, a\right)=\left\{\left(q_{0}, b, R\right)\right\} \quad \delta\left(q_{0}, b\right)=\left\{\left(q_{1}, b, L\right)\right\}
$$

Note that $L(M)=L\left(a^{*} b(a+b)^{*}\right)=L\left((a+b)^{*} b(a+b)^{*}\right)$

Example

Consider the TM M with $\Sigma=\{a, b\}, \Gamma=\Sigma \cup\{\square\}, F=\left\{q_{1}\right\}$ and

$$
\delta\left(q_{0}, a\right)=\left\{\left(q_{0}, b, R\right)\right\} \quad \delta\left(q_{0}, b\right)=\left\{\left(q_{1}, b, L\right)\right\}
$$

Note that $L(M)=L\left(a^{*} b(a+b)^{*}\right)=L\left((a+b)^{*} b(a+b)^{*}\right)$
For input x, M takes at most $|x|$ steps. So we take $p(k)=k$.

Example

Consider the TM M with $\Sigma=\{a, b\}, \Gamma=\Sigma \cup\{\square\}, F=\left\{q_{1}\right\}$ and

$$
\delta\left(q_{0}, a\right)=\left\{\left(q_{0}, b, R\right)\right\} \quad \delta\left(q_{0}, b\right)=\left\{\left(q_{1}, b, L\right)\right\}
$$

Note that $L(M)=L\left(a^{*} b(a+b)^{*}\right)=L\left((a+b)^{*} b(a+b)^{*}\right)$
For input x, M takes at most $|x|$ steps. So we take $p(k)=k$.
The tile types are:

for every $c \in \Gamma$.

Example

Consider the TM M with $\Sigma=\{a, b\}, \Gamma=\Sigma \cup\{\square\}, F=\left\{q_{1}\right\}$ and

$$
\delta\left(q_{0}, a\right)=\left\{\left(q_{0}, b, R\right)\right\} \quad \delta\left(q_{0}, b\right)=\left\{\left(q_{1}, b, L\right)\right\}
$$

Note that $L(M)=L\left(a^{*} b(a+b)^{*}\right)=L\left((a+b)^{*} b(a+b)^{*}\right)$
For input x, M takes at most $|x|$ steps. So we take $p(k)=k$.
The tile types are:

for every $c \in \Gamma$.

Example

Consider the input word aaa $\notin L(M)$. Then $n=2 p(3)+1=7$.

Example

Consider the input word aaa $\notin L(M)$. Then $n=2 p(3)+1=7$.

Example

Consider the input word aaa $\notin L(M)$. Then $n=2 p(3)+1=7$.

Example

Consider the input word aaa $\notin L(M)$. Then $n=2 p(3)+1=7$.

Example

Consider the input word aaa $\notin L(M)$. Then $n=2 p(3)+1=7$.

Example

Consider the input word aaa $\notin L(M)$. Then $n=2 p(3)+1=7$.

The tiling cannot be completed.

Example continued

Consider the input word $a a b \in L(M)$. Then $n=2 p(3)+1=7$.

Example continued

Consider the input word $a a b \in L(M)$. Then $n=2 p(3)+1=7$.

Example continued

Consider the input word $a a b \in L(M)$. Then $n=2 p(3)+1=7$.

Example continued

Consider the input word $a a b \in L(M)$. Then $n=2 p(3)+1=7$.

Example continued

Consider the input word $a a b \in L(M)$. Then $n=2 p(3)+1=7$.

Example continued

Consider the input word $a a b \in L(M)$. Then $n=2 p(3)+1=7$.

Example continued

Consider the input word $a a b \in L(M)$. Then $n=2 p(3)+1=7$.

Example continued

Consider the input word $a a b \in L(M)$. Then $n=2 p(3)+1=7$.

Complete tiling of the 7×7 field.

Satisfiability Problem

Satisfiability Problem is NP-complete

Theorem of Cook
The satisfiability problem in propositional logic is NP-complete.

Satisfiability Problem is NP-complete

Theorem of Cook

The satisfiability problem in propositional logic is NP-complete.

Proof

We give a polynomial-time reduction from the bounded tiling problem to the satisfiability problem.

Satisfiability Problem is NP-complete

Theorem of Cook

The satisfiability problem in propositional logic is NP-complete.

Proof

We give a polynomial-time reduction from the bounded tiling problem to the satisfiability problem.

Given

- a set T of tile types,
- a number n,
- a first row of tiles $t_{1} \cdots t_{n}$.

Satisfiability Problem is NP-complete

Theorem of Cook

The satisfiability problem in propositional logic is NP-complete.

Proof

We give a polynomial-time reduction from the bounded tiling problem to the satisfiability problem.

Given

- a set T of tile types,
- a number n,
- a first row of tiles $t_{1} \cdots t_{n}$.

We create a satisfiability problem as follows.

Satisfiability Problem is NP-complete

Theorem of Cook

The satisfiability problem in propositional logic is NP-complete.

Proof

We give a polynomial-time reduction from the bounded tiling problem to the satisfiability problem.

Given

- a set T of tile types,
- a number n,
- a first row of tiles $t_{1} \cdots t_{n}$.

We create a satisfiability problem as follows.
We introduce Boolean variables $x_{r c t}$ for $1 \leq r, c \leq n$ and $t \in T$. Intention: $x_{\text {rct }}=$ true \Longleftrightarrow tile of type t at row r and column c.

Satisfiability Problem is NP-complete

Theorem of Cook

The satisfiability problem in propositional logic is NP-complete.

Proof

We give a polynomial-time reduction from the bounded tiling problem to the satisfiability problem.

Given

- a set T of tile types,
- a number n,
- a first row of tiles $t_{1} \cdots t_{n}$.

We create a satisfiability problem as follows.
We introduce Boolean variables $x_{r c t}$ for $1 \leq r, c \leq n$ and $t \in T$. Intention: $x_{\text {rct }}=$ true \Longleftrightarrow tile of type t at row r and column c.

Satisfiability Problem is NP-complete

Proof continued...

We define Φ to be the conjunction of the 4 formulas:

1. Fist row is $t_{1} \cdots t_{n}: \quad \bigwedge_{c=1}^{n} x_{1 c t_{k}}$
2. At every position at most one tile type:

$$
\bigwedge_{r=1}^{n} \quad \bigwedge_{c=1}^{n} \quad \bigwedge_{t \neq t^{\prime}} \neg\left(x_{r c t} \wedge x_{r c t^{\prime}}\right)
$$

3. Neighbouring tiles must match (horizontal neighbours):

$$
\bigwedge_{r=1}^{n} \bigwedge_{c=1}^{n-1} \bigvee_{t t^{\prime} \text { matches }}\left(x_{r c t} \wedge x_{r(c+1) t^{\prime}}\right)
$$

4. Neighbouring tiles must match (vertical neighbours):

$$
\bigwedge_{r=1}^{n-1} \bigwedge_{c=1}^{n} \bigvee_{t}^{t^{\prime} \text { matches }}\left(x_{r c t} \wedge x_{(r+1) c t^{\prime}}\right)
$$

Satisfiability Problem is NP-complete

Proof continued...

We define Φ to be the conjunction of the 4 formulas:

1. Fist row is $t_{1} \cdots t_{n}: \quad \bigwedge_{c=1}^{n} x_{1 c t_{k}}$
2. At every position at most one tile type:

$$
\bigwedge_{r=1}^{n} \quad \bigwedge_{c=1}^{n} \quad \bigwedge_{t \neq t^{\prime}} \neg\left(x_{r c t} \wedge x_{r c t^{\prime}}\right)
$$

3. Neighbouring tiles must match (horizontal neighbours):

$$
\bigwedge_{r=1}^{n} \bigwedge_{c=1}^{n-1} \bigvee_{t t^{\prime} \text { matches }}\left(x_{r c t} \wedge x_{r(c+1) t^{\prime}}\right)
$$

4. Neighbouring tiles must match (vertical neighbours):

$$
\bigwedge_{r=1}^{n-1} \bigwedge_{c=1}^{n} \bigvee_{t}^{t^{\prime} \text { matches }}\left(x_{r c t} \wedge x_{(r+1) c t^{\prime}}\right)
$$

Size of the formula is polynomial in n.

Satisfiability Problem is NP-complete

Proof continued. . .

We define Φ to be the conjunction of the 4 formulas:

1. Fist row is $t_{1} \cdots t_{n}: \quad \bigwedge_{c=1}^{n} x_{1 c t_{k}}$
2. At every position at most one tile type:

$$
\bigwedge_{r=1}^{n} \bigwedge_{c=1}^{n} \bigwedge_{t \neq t^{\prime}} \neg\left(x_{r c t} \wedge x_{r c t^{\prime}}\right)
$$

3. Neighbouring tiles must match (horizontal neighbours):

$$
\bigwedge_{r=1}^{n} \bigwedge_{c=1}^{n-1} \bigvee_{t^{\prime} \text { matches }}\left(x_{r c t} \wedge x_{r(c+1) t^{\prime}}\right)
$$

4. Neighbouring tiles must match (vertical neighbours):

Size of the formula is polynomial in n.
There exists an $n \times n$ tiling with first row $t_{1} \cdots t_{n}$
\Longleftrightarrow the propositional formula Φ is satisfiable.

Satisfiability Problem is NP-complete

Proof continued. . .

We define Φ to be the conjunction of the 4 formulas:

1. Fist row is $t_{1} \cdots t_{n}: \quad \bigwedge_{c=1}^{n} x_{1 c t_{k}}$
2. At every position at most one tile type:

$$
\bigwedge_{r=1}^{n} \bigwedge_{c=1}^{n} \bigwedge_{t \neq t^{\prime}} \neg\left(x_{r c t} \wedge x_{r c t t^{\prime}}\right)
$$

3. Neighbouring tiles must match (horizontal neighbours):

$$
\bigwedge_{r=1}^{n} \bigwedge_{c=1}^{n-1} \bigvee_{t t^{\prime} \text { matches }}\left(x_{r c t} \wedge x_{r(c+1) t^{\prime}}\right)
$$

4. Neighbouring tiles must match (vertical neighbours):

$$
\bigwedge_{r=1}^{n-1} \bigwedge_{c=1}^{n} \bigvee_{t^{\prime} \text { matehes }}\left(x_{r c t} \wedge x_{(r+1) c t^{\prime}}\right)
$$

Size of the formula is polynomial in n.
There exists an $n \times n$ tiling with first row $t_{1} \cdots t_{n}$
\Longleftrightarrow the propositional formula Φ is satisfiable.
Thus we have a polynomial-time reduction.

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

First row:

Exercise

Reduce this bounded tiling problem to the satisfiability problem.
Types of tiles:

First row:

Then Φ is the conjunction of:

1. $x_{11 t_{1}} \wedge x_{12 t_{2}}$

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

First row:

Then Φ is the conjunction of:

1. $x_{11 t_{1}} \wedge x_{12 t_{2}}$

$$
\text { 2. } \begin{aligned}
& \text {. } \neg\left(x_{1 t_{1}} \wedge x_{1 t_{2}}\right) \wedge \neg\left(x_{12 t_{1}} \wedge x_{12 t_{2}}\right) \wedge \neg\left(x_{2 t_{1}} \wedge x_{21 t_{2}}\right) \wedge \neg\left(x_{22 t_{1}} \wedge x_{22 t_{2}}\right) \wedge \\
& \neg\left(x_{11 t_{1}} \wedge x_{11 t_{3}}\right) \wedge \neg\left(x_{12 t_{1}} \wedge x_{12 t_{3}}\right) \wedge \neg\left(x_{2 t_{1}} \wedge x_{\left.21 t_{t_{3}}\right)} \wedge \neg\left(x_{22 t_{1}}^{\wedge} x_{22 t_{3}}\right) \wedge\right. \\
& \neg\left(x_{11 t_{2}} \wedge x_{11 t_{3}}\right) \wedge \neg\left(x_{12 t_{2}} \wedge x_{12 t_{3}}\right) \wedge \neg\left(x_{21 t_{2}} \wedge x_{21 t_{3}}\right) \wedge \neg\left(x_{22 t_{2}} \wedge x_{22 t_{3}}\right)
\end{aligned}
$$

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

First row:

Then Φ is the conjunction of:

1. $x_{11 t_{1}} \wedge x_{12 t_{2}}$
2. $\neg\left(x_{11 t_{1}} \wedge x_{11 t_{2}}\right) \wedge \neg\left(x_{12 t_{1}} \wedge x_{12 t_{2}}\right) \wedge \neg\left(x_{21 t_{1}} \wedge x_{21 t_{2}}\right) \wedge \neg\left(x_{22 t_{1}} \wedge x_{22 t_{2}}\right) \wedge$ $\neg\left(x_{11 t_{1}} \wedge x_{11 t_{3}}\right) \wedge \neg\left(x_{12 t_{1}} \wedge x_{12 t_{3}}\right) \wedge \neg\left(x_{21 t_{1}} \wedge x_{21 t_{3}}\right) \wedge \neg\left(x_{22 t_{1}} \wedge x_{22 t_{3}}\right) \wedge$ $\neg\left(x_{11 t_{2}} \wedge x_{11 t_{3}}\right) \wedge \neg\left(x_{12 t_{2}} \wedge x_{12 t_{3}}\right) \wedge \neg\left(x_{21 t_{2}} \wedge x_{21 t_{3}}\right) \wedge \neg\left(x_{22 t_{2}} \wedge x_{22 t_{3}}\right)$
3. $\left(\left(x_{11 t_{1}} \wedge x_{12 t_{1}}\right) \vee\left(x_{11 t_{1}} \wedge x_{12 t_{2}}\right) \vee\left(x_{11 t_{1}} \wedge x_{12 t_{3}}\right) \vee\right.$ $\left.\left(x_{11 t_{2}} \wedge x_{12 t_{1}}\right) \vee\left(x_{11 t_{2}} \wedge x_{12 t_{2}}\right) \vee\left(x_{11 t_{2}} \wedge x_{12 t_{3}}\right)\right) \wedge$
$\left(\left(x_{21 t_{1}} \wedge x_{22 t_{1}}\right) \vee\left(x_{21 t_{1}} \wedge x_{22 t_{2}}\right) \vee\left(x_{21 t_{1}} \wedge x_{22 t_{3}}\right) \vee\right.$ $\left.\left(x_{21 t_{2}} \wedge x_{22 t_{1}}\right) \vee\left(x_{21 t_{2}} \wedge x_{22 t_{2}}\right) \vee\left(x_{21 t_{2}} \wedge x_{22 t_{3}}\right)\right)$

Exercise

Reduce this bounded tiling problem to the satisfiability problem.

Types of tiles:

First row:

Then Φ is the conjunction of:

1. $x_{11 t_{1}} \wedge x_{12 t_{2}}$
2. $\neg\left(x_{11 t_{1}} \wedge x_{11 t_{2}}\right) \wedge \neg\left(x_{12 t_{1}} \wedge x_{12 t_{2}}\right) \wedge \neg\left(x_{21 t_{1}} \wedge x_{21 t_{2}}\right) \wedge \neg\left(x_{22 t_{1}} \wedge x_{22 t_{2}}\right) \wedge$ $\neg\left(x_{11 t_{1}} \wedge x_{11 t_{3}}\right) \wedge \neg\left(x_{12 t_{1}} \wedge x_{12 t_{3}}\right) \wedge \neg\left(x_{21 t_{1}} \wedge x_{21 t_{3}}\right) \wedge \neg\left(x_{22 t_{1}} \wedge x_{22 t_{3}}\right) \wedge$ $\neg\left(x_{11 t_{2}} \wedge x_{11 t_{3}}\right) \wedge \neg\left(x_{12 t_{2}} \wedge x_{12 t_{3}}\right) \wedge \neg\left(x_{21 t_{2}} \wedge x_{21 t_{3}}\right) \wedge \neg\left(x_{22 t_{2}} \wedge x_{22 t_{3}}\right)$
3. $\left(\left(x_{11 t_{1}} \wedge x_{12 t_{1}}\right) \vee\left(x_{1 t_{1}} \wedge x_{12 t_{2}}\right) \vee\left(x_{1 t_{1}} \wedge x_{12 t_{3}}\right) \vee\right.$ $\left.\left(x_{11 t_{2}} \wedge x_{12 t_{1}}\right) \vee\left(x_{11 t_{2}} \wedge x_{12 t_{2}}\right) \vee\left(x_{11 t_{2}} \wedge x_{12 t_{3}}\right)\right) \wedge$
$\left(\left(x_{2 t_{1}} \wedge x_{22 t_{1}}\right) \vee\left(x_{2 t_{1}} \wedge x_{22 t_{2}}\right) \vee\left(x_{2 t_{1}} \wedge x_{22 t_{3}}\right) \vee\right.$ $\left.\left(x_{21 t_{2}} \wedge x_{22 t_{1}}\right) \vee\left(x_{21 t_{2}} \wedge x_{22 t_{2}}\right) \vee\left(x_{21 t_{2}} \wedge x_{22 t_{3}}\right)\right)$
4. $\left(\left(x_{11 t_{1}} \wedge x_{21 t_{2}}\right) \vee\left(x_{11 t_{1}} \wedge x_{21 t_{3}}\right) \vee\left(x_{1 t_{2}} \wedge x_{21 t_{1}}\right) \vee\left(x_{11 t_{3}} \wedge x_{21 t_{1}}\right)\right) \wedge$ $\left(\left(x_{12 t_{1}} \wedge x_{22 t_{2}}\right) \vee\left(x_{12 t_{1}} \wedge x_{22 t_{3}}\right) \vee\left(x_{12 t_{2}} \wedge x_{22 t_{1}}\right) \vee\left(x_{12 t_{3}} \wedge x_{22 t_{1}}\right)\right)$

$$
P=N P ?
$$

NP-completeness and $P=N P$?

Theorem
If an $N P$-complete language L is also in P, then $P=N P$.

NP-completeness and $P=N P$?

Theorem
If an NP-complete language L is also in P, then $P=N P$.

Proof.

Assume that L is NP-complete and in P .

NP-completeness and $P=N P$?

Theorem
If an NP-complete language L is also in P, then $P=N P$.

Proof.

Assume that L is NP-complete and in P .
Let $L^{\prime} \in N P$.

NP-completeness and $P=N P ?$

Theorem

If an NP-complete language L is also in P, then $P=N P$.

Proof.

Assume that L is NP-complete and in P .
Let $L^{\prime} \in N P$.
As L is NP-complete, there is a polynomial-time reduction f with

$$
x \in L^{\prime} \Longleftrightarrow f(x) \in L
$$

NP-completeness and $\mathrm{P}=\mathrm{NP}$?

Theorem

If an NP-complete language L is also in P, then $P=N P$.

Proof.

Assume that L is NP-complete and in P .
Let $L^{\prime} \in N P$.
As L is NP-complete, there is a polynomial-time reduction f with

$$
x \in L^{\prime} \Longleftrightarrow f(x) \in L
$$

Since $L \in \mathrm{P}$, we can compute $f(x) \in L$ in polynomial time.

NP-completeness and $\mathrm{P}=\mathrm{NP}$?

Theorem

If an NP-complete language L is also in P, then $P=N P$.

Proof.

Assume that L is NP-complete and in P.
Let $L^{\prime} \in N P$.
As L is NP-complete, there is a polynomial-time reduction f with

$$
x \in L^{\prime} \Longleftrightarrow f(x) \in L
$$

Since $L \in P$, we can compute $f(x) \in L$ in polynomial time.
Thus $x \in L^{\prime}$ can be decided in polynomial time.
Hence $L^{\prime} \in P$.

NP-completeness and $\mathrm{P}=\mathrm{NP}$?

Theorem

If an NP-complete language L is also in P, then $P=N P$.

Proof.

Assume that L is NP-complete and in P .
Let $L^{\prime} \in N P$.
As L is NP-complete, there is a polynomial-time reduction f with

$$
x \in L^{\prime} \Longleftrightarrow f(x) \in L
$$

Since $L \in P$, we can compute $f(x) \in L$ in polynomial time.
Thus $x \in L^{\prime}$ can be decided in polynomial time.
Hence $L^{\prime} \in P$.
For proving $\mathrm{P}=$ NP it suffices to show that one NP-complete problem can be solved in deterministic polynomial time.

co-NP

The Class co-NP

A problem L is in co-NP if the complement \bar{L} is in NP.
In other words, the set of instances without solution is in NP.

The Class co-NP

A problem L is in co-NP if the complement \bar{L} is in NP.
In other words, the set of instances without solution is in NP.
The question whether a propositional formula is not satisfiable is in co-NP.

The Class co-NP

A problem L is in co-NP if the complement \bar{L} is in NP.
In other words, the set of instances without solution is in NP.
The question whether a propositional formula is not satisfiable is in co-NP.

It is unknown whether $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$.

The Class co-NP

A problem L is in co-NP if the complement \bar{L} is in NP.
In other words, the set of instances without solution is in NP.
The question whether a propositional formula is not satisfiable is in co-NP.

It is unknown whether $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$.
It is unknown whether the satisfiability problem is in co-NP.

The Class co-NP

A problem L is in co-NP if the complement \bar{L} is in NP. In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable is in co-NP.

It is unknown whether $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$.
It is unknown whether the satisfiability problem is in co-NP.
The difficulty is that it has to be shown that a formula evaluates to false for every variable assignment.

The Class co-NP

A problem L is in co-NP if the complement \bar{L} is in NP. In other words, the set of instances without solution is in NP.

The question whether a propositional formula is not satisfiable is in co-NP.

It is unknown whether NP = co-NP.
It is unknown whether the satisfiability problem is in co-NP.
The difficulty is that it has to be shown that a formula evaluates to false for every variable assignment.

Theorem

If an NP-complete problem is in co-NP, then NP $=$ co-NP.
Note that there are problems that are both in NP \cap co-NP.

Space Complexity

Space Complexity

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$.
A nondeterministic Turing machine M

runs in space f

if for every input w, every computation of M visits at most $f(|w|)$ positions on the tape.

Space Complexity

Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$.
A nondeterministic Turing machine M

runs in space f

if for every input w, every computation of M visits at most $f(|w|)$ positions on the tape.

The function f gives an upper bound on the number of visited cells on the tape in terms of the length of the input word.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M runs in space p for some polynomial p.

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M runs in space p for some polynomial p.

NPSpace $=\{L(M) \mid M$ nondeterministic polynomial space TM $\}$ PSpace $=\{L(M) \mid M$ deterministic polynomial space TM $\}$

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M runs in space p for some polynomial p.

NPSpace $=\{L(M) \mid M$ nondeterministic polynomial space TM $\}$ PSpace $=\{L(M) \mid M$ deterministic polynomial space TM $\}$

$$
\mathrm{P} \subseteq \mathrm{PSpace} \quad \mathrm{NP} \subseteq \text { NPSpace }
$$

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M runs in space p for some polynomial p.

NPSpace $=\{L(M) \mid M$ nondeterministic polynomial space TM $\}$ PSpace $=\{L(M) \mid M$ deterministic polynomial space TM $\}$

$$
\mathrm{P} \subseteq \text { PSpace } \quad N P \subseteq \text { NPSpace }
$$

Theorem of Savitch

> PSpace = NPSpace

Complexity Classes PSpace and NPSpace

A nondeterministic Turing machine M is polynomial space if M runs in space p for some polynomial p.

NPSpace $=\{L(M) \mid M$ nondeterministic polynomial space TM $\}$ PSpace $=\{L(M) \mid M$ deterministic polynomial space TM $\}$

$$
\mathrm{P} \subseteq \text { PSpace } \quad \mathrm{NP} \subseteq \text { NPSpace }
$$

Theorem of Savitch

PSpace = NPSpace

Actually, the theorem says something more general:
If L is accepted by a nondeterministic TM in $f(n)$ space, then L is accepted by a deterministic TM in $f(n)^{2}$ space.

PSpace-completeness

It is unknown whether these inclusions are strict.

PSpace-completeness

It is unknown whether these inclusions are strict.

A language $L \in$ PSpace is PSpace-complete if every language $L^{\prime} \in$ PSpace is polynomial-time reducible to L.
$L(r)=\Sigma^{*}$? for regular expression r is PSpace-complete.

The Classes EXP, NEXP and EXPSpace

The Classes EXP and NEXP

A nondeterministic Turing machine M is

- exponential time if M runs in time $2^{p(|x|)}$ and
\square exponential space if M runs in space $2^{p(|x|)}$
for some polynomial p.

The Classes EXP and NEXP

A nondeterministic Turing machine M is

- exponential time if M runs in time $2^{p(|x|)}$ and
- exponential space if M runs in space $2^{p(|x|)}$
for some polynomial p.
NEXP $=\{L(M) \mid M$ nondeterm. exponential time TM $\}$
EXP $=\{L(M) \mid M$ deterministic exponential time TM $\}$
NEXPSpace $=\{L(M) \mid M$ nondeterm. exponential space TM $\}$
EXPSpace $=\{L(M) \mid M$ deterministic exponential space TM $\}$

The Classes EXP and NEXP

A nondeterministic Turing machine M is

- exponential time if M runs in time $2^{p(|x|)}$ and
- exponential space if M runs in space $2^{p(|x|)}$
for some polynomial p.

$$
\text { NEXP }=\{L(M) \mid M \text { nondeterm. exponential time TM }\}
$$

EXP $=\{L(M) \mid M$ deterministic exponential time TM $\}$
NEXPSpace $=\{L(M) \mid M$ nondeterm. exponential space TM $\}$
EXPSpace $=\{L(M) \mid M$ deterministic exponential space TM $\}$

$$
\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSpace} \subseteq \mathrm{EXP} \subseteq \mathrm{NEXP} \subseteq \text { EXPSpace }
$$

It is unknown whether these inclusions are strict. We know
$P \neq E X P \quad N P \neq$ NEXP \quad PSpace \neq EXPSpace $=$ NEXPSpace
PSpace \subseteq EXP holds since a polynomial-space TM can at most take an exponential number of configurations.

Complexity Hierarchy

The following inclusions are known to be strict:

$$
P \neq E X P \quad N P \neq N E X P \quad P S p a c e \neq \text { EXPSpace }
$$

